PectolinarigeninCAS# 520-12-7 |
Quality Control & MSDS
Number of papers citing our products
Chemical structure
3D structure
Cas No. | 520-12-7 | SDF | Download SDF |
PubChem ID | 5320438 | Appearance | Yellow powder |
Formula | C17H14O6 | M.Wt | 314.3 |
Type of Compound | Flavonoids | Storage | Desiccate at -20°C |
Synonyms | 5,7-Dihydroxy 4',6-dimethoxyflavone; 4',6-Dimethoxyscutellarein; Hortensin; 6-Methoxyacacetin; 6-Methoxyapigenin 4'-methyl ether; 6-Methoxykaempferide; 6-Methoxy 4'-methylapigenin; 4'-Methylcapillarisin; Pectolarigenin; Scutellarein 4',6-dimethyl ether | ||
Solubility | Sparingly soluble in ethanol and methan | ||
Chemical Name | 5,7-dihydroxy-6-methoxy-2-(4-methoxyphenyl)chromen-4-one | ||
SMILES | COC1=CC=C(C=C1)C2=CC(=O)C3=C(C(=C(C=C3O2)O)OC)O | ||
Standard InChIKey | GPQLHGCIAUEJQK-UHFFFAOYSA-N | ||
Standard InChI | InChI=1S/C17H14O6/c1-21-10-5-3-9(4-6-10)13-7-11(18)15-14(23-13)8-12(19)17(22-2)16(15)20/h3-8,19-20H,1-2H3 | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Description | Pectolinarigenin possesses anti-inflammatory, antiallergic and hepatoprotective activities.It is a dual inhibitor of COX-2/5-LOX,and the IC50 >1 microM; it also can increase activity levels of GSH, GR, GCS, and GST, as well as SOD. |
Targets | COX | LOX | SOD |
In vitro | Anti-inflammatory activity of pectolinarigenin and pectolinarin isolated from Cirsium chanroenicum.[Pubmed: 18981574]Biol Pharm Bull. 2008 Nov;31(11):2063-7.
|
In vivo | Inhibitory Effect on β -Hexosaminidase Release from RBL-2H3 Cells of Extracts and Some Pure Constituents of Benchalokawichian, a Thai Herbal Remedy, Used for Allergic Disorders.[Pubmed: 25580152]Evid Based Complement Alternat Med. 2014;2014:828760.Benchalokawichian (BCW), a Thai traditional herbal formulation, has long been used as antipyretic and to treat skin disorders. It comprises roots from five herbs: Ficus racemosa, Capparis micracantha, Clerodendrum petasites, Harrisonia perforata, and Tiliacora triandra. This polyherbal remedy has recently been included in the Thailand National List of Essential Medicines (Herbal Products list).
|
Animal Research | Pectolinarin and Pectolinarigenin of Cirsium setidens Prevent the Hepatic Injury in Rats Caused by D-Galactosamine via an Antioxidant Mechanism.[Pubmed: 18379079]Biol Pharm Bull. 2008 Apr;31(4):760-4.To identify the hepatoprotective component from the leaves of Cirsium setidens (Compositae), the methanolic extract was divided into two fractions, chloroform and butanol fractions, and their hepatoprotective efficacy was evaluated in a rat model of hepatic injury caused by D-galactosamine (GalN).
|
Pectolinarigenin Dilution Calculator
Pectolinarigenin Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 3.1817 mL | 15.9084 mL | 31.8167 mL | 63.6335 mL | 79.5418 mL |
5 mM | 0.6363 mL | 3.1817 mL | 6.3633 mL | 12.7267 mL | 15.9084 mL |
10 mM | 0.3182 mL | 1.5908 mL | 3.1817 mL | 6.3633 mL | 7.9542 mL |
50 mM | 0.0636 mL | 0.3182 mL | 0.6363 mL | 1.2727 mL | 1.5908 mL |
100 mM | 0.0318 mL | 0.1591 mL | 0.3182 mL | 0.6363 mL | 0.7954 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- 6-Methoxyluteolin
Catalog No.:BCN3613
CAS No.:520-11-6
- H-Cys-OH
Catalog No.:BCC2902
CAS No.:52-90-4
- Haloperidol
Catalog No.:BCC4909
CAS No.:52-86-8
- Lynestrenol
Catalog No.:BCC9014
CAS No.:52-76-6
- H-D-Pen-OH
Catalog No.:BCC3307
CAS No.:52-67-5
- Morphine hydrochloride
Catalog No.:BCC6368
CAS No.:52-26-6
- Thio-TEPA
Catalog No.:BCC5354
CAS No.:52-24-4
- Prednisolone Acetate
Catalog No.:BCC4831
CAS No.:52-21-1
- Spironolactone
Catalog No.:BCC4366
CAS No.:52-01-7
- Dehydroespeletone
Catalog No.:BCN5652
CAS No.:51995-99-4
- Schaftoside
Catalog No.:BCN2343
CAS No.:51938-32-0
- 5-Aminoindole
Catalog No.:BCC8735
CAS No.:5192-03-0
- Kaempferol
Catalog No.:BCN5653
CAS No.:520-18-3
- Hesperidin
Catalog No.:BCN5654
CAS No.:520-26-3
- Diosimin
Catalog No.:BCN4993
CAS No.:520-27-4
- Tectochrysin
Catalog No.:BCN5655
CAS No.:520-28-5
- Tricin
Catalog No.:BCN5656
CAS No.:520-32-1
- Hesperetin
Catalog No.:BCN5657
CAS No.:520-33-2
- Diosmetin
Catalog No.:BCN2356
CAS No.:520-34-3
- Apigenin
Catalog No.:BCN5658
CAS No.:520-36-5
- Asebogenin
Catalog No.:BCN7232
CAS No.:520-42-3
- Psilocin
Catalog No.:BCC6168
CAS No.:520-53-6
- Spectabiline
Catalog No.:BCN2098
CAS No.:520-55-8
- Spartioidine
Catalog No.:BCN2134
CAS No.:520-59-2
Inhibitory Effect on beta -Hexosaminidase Release from RBL-2H3 Cells of Extracts and Some Pure Constituents of Benchalokawichian, a Thai Herbal Remedy, Used for Allergic Disorders.[Pubmed:25580152]
Evid Based Complement Alternat Med. 2014;2014:828760.
Introduction. Benchalokawichian (BCW), a Thai traditional herbal formulation, has long been used as antipyretic and to treat skin disorders. It comprises roots from five herbs: Ficus racemosa, Capparis micracantha, Clerodendrum petasites, Harrisonia perforata, and Tiliacora triandra. This polyherbal remedy has recently been included in the Thailand National List of Essential Medicines (Herbal Products list). Methodology. A Bioassay-guided fractionation technique was used to evaluate antiallergy activities of crude extracts, and those obtained by the multistep column chromatography isolation of pure compounds. Inhibitory effect on the release of beta-hexosaminidase from RBL-2H3 cells was used to determine antiallergic activity. Results. Two pure compounds from BCW formulation showed higher antiallergic activity than crude or semipure extracts. Pectolinarigenin showed the highest antiallergic activity, followed by O-methylalloptaeroxylin, with IC50 values of 6.3 mug/mL and 14.16 mug/mL, respectively. Moreover, the highest activities of pure compounds were significantly higher than chlorpheniramine (16.2 mug/mL). Conclusions. This study provides some support for the use of BCW in reducing itching and treatment of other skin allergic disorders. The two isolated constituents exhibited high antiallergic activity and it is necessary to determine their mechanism of action. Further phytochemical and safety studies of pure compounds are required before development of these as antiallergy commercial remedies.
Pectolinarin and Pectolinarigenin of Cirsium setidens Prevent the Hepatic Injury in Rats Caused by D-Galactosamine via an Antioxidant Mechanism.[Pubmed:18379079]
Biol Pharm Bull. 2008 Apr;31(4):760-4.
To identify the hepatoprotective component from the leaves of Cirsium setidens (Compositae), the methanolic extract was divided into two fractions, chloroform and butanol fractions, and their hepatoprotective efficacy was evaluated in a rat model of hepatic injury caused by D-galactosamine (GalN). Hepatoprotective activity was measured by the activity of serum aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), and lactate dehydrogenase (LDH). Glutathione metabolism was measured via biochemical parameters such as glutathione (GSH), glutathione reductase (GR), gamma-glutamylcysteine synthetase (GCS), glutathione S-transferase (GST), and superoxide dismutase (SOD) levels. We subjected the butanol fraction, which had higher activity, to column chromatography to yield pectolinarin, which was further hydrolyzed to yield Pectolinarigenin. Administration (10, 20 mg/kg, p.o.) of the main flavonoid glycoside component, pectolinarin, and its aglycone, Pectolinarigenin, for 2 weeks significantly decreased the activity levels of AST, ALT, ALP and LDH, indicating that the two compounds have hepatoprotective activity. Pectolinarin and Pectolinarigenin also increased activity levels of GSH, GR, GCS, and GST, as well as SOD. The significant effect was only seen in SOD activity. This suggests that the two components exhibit hepatoprotective activity mainly via SOD antioxidant mechanism.
Anti-inflammatory activity of pectolinarigenin and pectolinarin isolated from Cirsium chanroenicum.[Pubmed:18981574]
Biol Pharm Bull. 2008 Nov;31(11):2063-7.
In order to identify the active anti-inflammatory ingredient(s) in Cirsium chanroenicum (Compositae), its methanol extract and several solvent fractions were prepared; the methanol extract and the ethylacetate fraction inhibited cyclooxygenase-2 (COX-2)-mediated prostaglandin E2 (PGE2) and 5-lipoxygenase (5-LOX)-mediated leukotriene (LT) production in lipopolysaccharide-treated RAW 264.7 cells and A23187-treated rat basophilic leukemia (RBL-1) cells, respectively. Further bioactivity-guided fractionation of the ethylacetate fraction using column chromatography led to the isolation of Pectolinarigenin (5,7-dihydroxy-4',6-dimethoxyflavone), along with pectolinarin [Pectolinarigenin 7-rhamnosyl-(1-->6)-glucoside]. Pectolinarigenin strongly inhibited COX-2-mediated PGE2 and 5-LOX-mediated LT production at >1 microM, indicating that it is a dual inhibitor of COX-2/5-LOX. However, Pectolinarigenin did not affect COX-2 expression or nuclear transcription factor (NF-kappaB) activation. In addition, in vivo studies demonstrated that oral administration of these two compounds at 20-100 mg/kg resulted in similar inhibitory activities against several animal models of inflammation/allergy: arachidonic acid-induced mouse ear edema, carrageenan-induced mouse paw edema and passive cutaneous anaphylaxis. All of these results suggest that Pectolinarigenin and pectolinarin possess anti-inflammatory activity and that they may inhibit eicosanoid formation in inflammatory lesions. These activities certainly contribute to the anti-inflammatory mechanism of C. chanroenicum.