TLQP 21VGF-derived peptide CAS# 869988-94-3 |
- Melphalan
Catalog No.:BCC2403
CAS No.:148-82-3
- GRI 977143
Catalog No.:BCC2401
CAS No.:325850-81-5
- Mdivi 1
Catalog No.:BCC2402
CAS No.:338967-87-6
- DAPK Substrate Peptide
Catalog No.:BCC2400
CAS No.:386769-53-5
- Cesium chloride
Catalog No.:BCC2399
CAS No.:7647-17-8
Quality Control & MSDS
Number of papers citing our products
Chemical structure
3D structure
Cas No. | 869988-94-3 | SDF | Download SDF |
PubChem ID | 56972211 | Appearance | Powder |
Formula | C107H170N40O26 | M.Wt | 2432.77 |
Type of Compound | N/A | Storage | Desiccate at -20°C |
Synonyms | TLQP-21 | ||
Solubility | Soluble to 1 mg/ml in water | ||
Sequence | TLQPPASSRRRHFHHALPPAR | ||
SMILES | CC(C)CC(C(=O)NC(CCC(=O)N)C(=O)N1CCCC1C(=O)N2CCCC2C(=O)NC(C)C(=O)NC(CO)C(=O)NC(CO)C(=O)NC(CCCNC(=N)N)C(=O)NC(CCCNC(=N)N)C(=O)NC(CCCNC(=N)N)C(=O)NC(CC3=CNC=N3)C(=O)NC(CC4=CC=CC=C4)C(=O)NC(CC5=CNC=N5)C(=O)NC(CC6=CNC=N6)C(=O)NC(C)C(=O)NC(CC(C)C)C(=O)N7CCCC7C(=O)N8CCCC8C(=O)NC(C)C(=O)NC(CCCNC(=N)N)C(=O)O)NC(=O)C(C(C)O)N | ||
Standard InChIKey | PWWMOXVVMRPYJS-IWCKOKPFSA-N | ||
Standard InChI | InChI=1S/C107H170N40O26/c1-54(2)40-69(140-98(167)82(109)59(8)150)90(159)134-67(30-31-81(108)151)99(168)146-38-18-28-79(146)101(170)144-36-16-27-78(144)97(166)130-58(7)85(154)142-75(49-148)95(164)143-76(50-149)94(163)133-65(23-13-33-122-105(112)113)87(156)131-64(22-12-32-121-104(110)111)86(155)132-66(24-14-34-123-106(114)115)88(157)137-72(44-62-47-119-52-126-62)92(161)136-70(42-60-20-10-9-11-21-60)91(160)139-73(45-63-48-120-53-127-63)93(162)138-71(43-61-46-118-51-125-61)89(158)128-56(5)84(153)141-74(41-55(3)4)100(169)147-39-19-29-80(147)102(171)145-37-17-26-77(145)96(165)129-57(6)83(152)135-68(103(172)173)25-15-35-124-107(116)117/h9-11,20-21,46-48,51-59,64-80,82,148-150H,12-19,22-45,49-50,109H2,1-8H3,(H2,108,151)(H,118,125)(H,119,126)(H,120,127)(H,128,158)(H,129,165)(H,130,166)(H,131,156)(H,132,155)(H,133,163)(H,134,159)(H,135,152)(H,136,161)(H,137,157)(H,138,162)(H,139,160)(H,140,167)(H,141,153)(H,142,154)(H,143,164)(H,172,173)(H4,110,111,121)(H4,112,113,122)(H4,114,115,123)(H4,116,117,124)/t56-,57-,58-,59+,64-,65-,66-,67-,68-,69-,70-,71-,72-,73-,74-,75-,76-,77-,78-,79-,80-,82-/m0/s1 | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Description | VGF-derived peptide; spans residues 556-576 of the precursor sequence. Protects cerebellar granule cells (CGCs) from serum and potassium deprivation-induced apoptosis. Increases energy expenditure and prevents early phase diet-induced diabetes. |
TLQP 21 Dilution Calculator
TLQP 21 Molarity Calculator
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
TLQP 21, VGF-derived peptide; spans residues 556-576 of the precursor sequence.
- MK-2048
Catalog No.:BCC2136
CAS No.:869901-69-9
- Alpinumisoflavone acetate
Catalog No.:BCN6813
CAS No.:86989-18-6
- VRT752271
Catalog No.:BCC4122
CAS No.:869886-67-9
- Radezolid
Catalog No.:BCC1882
CAS No.:869884-78-6
- Formoxanthone A
Catalog No.:BCN6451
CAS No.:869880-32-0
- Andropanolide
Catalog No.:BCN4559
CAS No.:869807-57-8
- A 841720
Catalog No.:BCC7550
CAS No.:869802-58-4
- threo-Guaiacylglycerol beta-coniferyl ether
Catalog No.:BCN1323
CAS No.:869799-76-8
- A-770041
Catalog No.:BCC1323
CAS No.:869748-10-7
- Obestatin (rat)
Catalog No.:BCC5912
CAS No.:869705-22-6
- Fmoc-Tyr(tBu)-ol
Catalog No.:BCC2572
CAS No.:86967-51-3
- Tecovirimat
Catalog No.:BCC5518
CAS No.:869572-92-9
- Thiolutin
Catalog No.:BCC2471
CAS No.:87-11-6
- Salicylanilide
Catalog No.:BCC4712
CAS No.:87-17-2
- Ac-DL-Trp-OH
Catalog No.:BCC3119
CAS No.:87-32-1
- Isosorbide dinitrate
Catalog No.:BCC9004
CAS No.:87-33-2
- trans-Caryophyllene
Catalog No.:BCN2644
CAS No.:87-44-5
- Gramine
Catalog No.:BCN4959
CAS No.:87-52-5
- Pyrogallol
Catalog No.:BCN4424
CAS No.:87-66-1
- Tartaric acid
Catalog No.:BCN3824
CAS No.:87-69-4
- D-Mannitol busulfan
Catalog No.:BCN3789
CAS No.:1187-00-4
- Inositol
Catalog No.:BCN8471
CAS No.:87-89-8
- xylitol pentacetate
Catalog No.:BCN6267
CAS No.:13437-68-8
- A 839977
Catalog No.:BCC4290
CAS No.:870061-27-1
The neuropeptide TLQP-21 opposes obesity via C3aR1-mediated enhancement of adrenergic-induced lipolysis.[Pubmed:28123945]
Mol Metab. 2016 Oct 31;6(1):148-158.
OBJECTIVES: Obesity is characterized by excessive fat mass and is associated with serious diseases such as type 2 diabetes. Targeting excess fat mass by sustained lipolysis has been a major challenge for anti-obesity therapies due to unwanted side effects. TLQP-21, a neuropeptide encoded by the pro-peptide VGF (non-acronymic), that binds the complement 3a receptor 1 (C3aR1) on the adipocyte membrane, is emerging as a novel modulator of adipocyte functions and a potential target for obesity-associated diseases. The molecular mechanism is still largely uncharacterized. METHODS: We used a combination of pharmacological and genetic gain and loss of function approaches. 3T3-L1 and mature murine adipocytes were used for in vitro experiments. Chronic in vivo experiments were conducted on diet-induced obese wild type, beta1, beta2, beta3-adrenergic receptor (AR) deficient and C3aR1 knockout mice. Acute in vivo lipolysis experiments were conducted on Sprague Dawley rats. RESULTS: We demonstrated that TLQP-21 does not possess lipolytic properties per se. Rather, it enhances beta-AR activation-induced lipolysis by a mechanism requiring Ca(2+) mobilization and ERK activation of Hormone Sensitive Lipase (HSL). TLQP-21 acutely potentiated isoproterenol-induced lipolysis in vivo. Finally, chronic peripheral TLQP-21 treatment decreases body weight and fat mass in diet induced obese mice by a mechanism involving beta-adrenergic and C3a receptor activation without associated adverse metabolic effects. CONCLUSIONS: In conclusion, our data identify an alternative pathway modulating lipolysis that could be targeted to diminish fat mass in obesity without the side effects typically observed when using potent pro-lipolytic molecules.
JMV5656, A Novel Derivative of TLQP-21, Triggers the Activation of a Calcium-Dependent Potassium Outward Current in Microglial Cells.[Pubmed:28280458]
Front Cell Neurosci. 2017 Feb 23;11:41.
TLQP-21 (TLQPPASSRRRHFHHALPPAR) is a multifunctional peptide that is involved in the control of physiological functions, including feeding, reproduction, stress responsiveness, and general homeostasis. Despite the huge interest in TLQP-21 biological activity, very little is known about its intracellular mechanisms of action. In microglial cells, TLQP-21 stimulates increases of intracellular Ca(2+) that may activate functions, including proliferation, migration, phagocytosis and production of inflammatory molecules. Our aim was to investigate whether JMV5656 (RRRHFHHALPPAR), a novel short analogue of TLQP-21, stimulates intracellular Ca(2+) in the N9 microglia cells, and whether this Ca(2+) elevation is coupled with the activation Ca(2+)-sensitive K(+) channels. TLQP-21 and JMV5656 induced a sharp, dose-dependent increment in intracellular calcium. In 77% of cells, JMV5656 also caused an increase in the total outward currents, which was blunted by TEA (tetraethyl ammonium chloride), a non-selective blocker of voltage-dependent and Ca(2+)-activated potassium (K(+)) channels. Moreover, the effects of ion channel blockers charybdotoxin and iberiotoxin, suggested that multiple calcium-activated K(+) channel types drove the outward current stimulated by JMV5656. Additionally, inhibition of JMV5656-stimulated outward currents by NS6180 (4-[[3-(trifluoromethyl)phenyl]methyl]-2H-1,4 benzothiazin-3(4H)-one) and TRAM-34 (triarylmethane-34), indicated that KCa3.1 channels are involved in this JMV5656 mechanisms of action. In summary, we demonstrate that, in N9 microglia cells, the interaction of JMV5656 with the TLQP-21 receptors induced an increase in intracellular Ca(2+), and, following extracellular Ca(2+) entry, the opening of KCa3.1 channels.
Probing the Conformational Dynamics of the Bioactive Peptide TLQP-21 in Solution: A Molecular Dynamics Study.[Pubmed:25682804]
Chem Biol Drug Des. 2015 Oct;86(4):938-44.
VGF-derived peptide, TLQP-21, is a physiologically active neuropeptide exhibiting important roles in energy expenditure and balance, gastric contractility, reproduction, pain modulation, and stress. Although the physiological functions of the peptide constitute a research area of considerable interest, structural information is clearly lacking. Here, using extensive 550 nanoseconds molecular dynamics simulation in explicit water model, we have explored the folding energy landscape of the peptide. Principal component analysis and cluster analysis have been used to identify highly populated conformational states of the peptide in solution. The most populated structure of the peptide adopts a highly compact globular form stabilized by several hydrogen-bonding interactions and pi-cationic interactions. Strong surface complementarity of hydrophobic residues allows tighter spatial fit of the residues within the core region of the peptide. Our simulation also predicts that the peptide is highly flexible in solution and that the region A7 -R9 and three C-terminal residues, P19 -R21 , possess strong helical propensity.
TLQP-21, a neuroendocrine VGF-derived peptide, prevents cerebellar granule cells death induced by serum and potassium deprivation.[Pubmed:18173805]
J Neurochem. 2008 Jan;104(2):534-44.
Different VGF peptides derived from Vgf, originally identified as a nerve growth factor responsive gene, have been detected in neurons within the central and peripheral nervous system and in various endocrine cells. In the current study, we have evaluated the ability of TLQP-21, a VGF-derived peptide, to protect, in a dose- and time-dependent manner, primary cultures of rat cerebellar granule cells (CGCs) from serum and potassium deprivation-induced cell death. We demonstrated that TLQP-21 increased survival of CGCs by decreasing the degree of apoptosis as assessed by cell viability and DNA fragmentation. Moreover, TLQP-21 significantly activated extracellular signal-regulated kinase 1/2, serine/threonine protein kinase, and c-jun N-terminal kinase phosphorylation, while decreased the extent of protein kinase C phosphorylation, as demonstrated by western blot analysis. In addition, TLQP-21 induced significant increase in intracellular calcium (as measured by fura-2AM) in about 60% of the recorded neurons. Taken together, the present results demonstrate that TLQP-21 promotes the survival of CGCs via pathways involving, within few minutes, modulation of kinases associated with CGCs survival, and by increasing intracellular calcium which can contribute to the neuroprotective effect of the peptide.