VavainCAS# 199996-77-5 |
Quality Control & MSDS
Number of papers citing our products
Chemical structure
Cas No. | 199996-77-5 | SDF | Download SDF |
PubChem ID | N/A | Appearance | Powder |
Formula | C18H16O7 | M.Wt | 344.34 |
Type of Compound | Flavonoids | Storage | Desiccate at -20°C |
Solubility | Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc. | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Vavain Dilution Calculator
Vavain Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 2.9041 mL | 14.5205 mL | 29.0411 mL | 58.0821 mL | 72.6027 mL |
5 mM | 0.5808 mL | 2.9041 mL | 5.8082 mL | 11.6164 mL | 14.5205 mL |
10 mM | 0.2904 mL | 1.4521 mL | 2.9041 mL | 5.8082 mL | 7.2603 mL |
50 mM | 0.0581 mL | 0.2904 mL | 0.5808 mL | 1.1616 mL | 1.4521 mL |
100 mM | 0.029 mL | 0.1452 mL | 0.2904 mL | 0.5808 mL | 0.726 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- 6-Demethoxyirigenin
Catalog No.:BCX0503
CAS No.:1348833-10-2
- Oxyphyllenodiol A
Catalog No.:BCX0502
CAS No.:363610-30-4
- Teuhetenone A
Catalog No.:BCX0501
CAS No.:152481-80-6
- Isocrenatoside
Catalog No.:BCX0500
CAS No.:221895-09-6
- Erythrinin E
Catalog No.:BCX0499
CAS No.:2731101-51-0
- Crenatoside
Catalog No.:BCX0498
CAS No.:61276-16-2
- Curdionolide B
Catalog No.:BCX0497
CAS No.:1190225-68-3
- 7,4'-Di-O-methylaromadendrin
Catalog No.:BCX0496
CAS No.:41515-76-8
- Sanggenol C
Catalog No.:BCX0495
CAS No.:174423-32-6
- Rugulolide D
Catalog No.:BCX0494
CAS No.:3002032-69-8
- Sanggenon E
Catalog No.:BCX0493
CAS No.:81381-69-3
- 4-Hydroxy-4-methylcyclohex-2-en-1-one
Catalog No.:BCX0492
CAS No.:70150-56-0
- Iristectorin B
Catalog No.:BCX0505
CAS No.:94396-09-5
- Methylconiferin
Catalog No.:BCX0506
CAS No.:883150-46-7
- 1β-Hydroxy-8α-methoxyeremophila-7(11),9-dien-12,8β-olide
Catalog No.:BCX0507
CAS No.:849700-45-4
- (S)-5-Hydroxy-1-(4-hydroxy-3-methoxyphenyl)-7-phenylheptan-3-one
Catalog No.:BCX0508
CAS No.:1220110-76-8
- Moracin N
Catalog No.:BCX0509
CAS No.:135248-05-4
- D-Mannosamine hydrochloride
Catalog No.:BCX0510
CAS No.:5505-63-5
- D-Galactosamine hydrochloride
Catalog No.:BCX0511
CAS No.:1772-03-8
- N-acetyl-D-galactosamine
Catalog No.:BCX0512
CAS No.:1811-31-0
- N-Acetyl-D-mannosamine
Catalog No.:BCX0513
CAS No.:7772-94-3
- Xanthomicrol
Catalog No.:BCX0514
CAS No.:16545-23-6
- 5,7-Dihydroxy-3,8,3',4'-tetramethoxyflavone
Catalog No.:BCX0515
CAS No.:42923-42-2
- 5,4'-Dihydroxy-6,7,8,3'-tetramethoxyflavone
Catalog No.:BCX0516
CAS No.:16520-78-8
The methanol extract of Ceiba pentandra reverses monosodium glutamate-induced cardiometabolic syndrome in rats via the regulation of dyslipidemia, inflammation, oxidative stress, and insulin sensitization.[Pubmed:36865446]
Heliyon. 2023 Feb 11;9(2):e13689.
The antidiabetic effects of the methanol extract of the stem bark of Ceiba pentandra (Cp) have been demonstrated in various experimental models. Besides, this extract is rich in 8-formyl-7-hydroxy-5-isopropyl-2-methoxy-3-methyl-1,4-naphthaquinone, 2,4,6-Trimethoxyphenol and Vavain. However, it remains unknown whether Cp can mitigate cardiometabolic syndrome (CMS). The present study assessed the curative properties of Cp against Monosodium Glutamate (MSG)-induced CMS in rats. Male neonate Wistar rats were intraperitoneally administered with MSG (4 mg/g/day) during the first 5 days of life (postnatal days 2-6). They were kept under standard breeding conditions up to 5 months of age for the development of CMS. Diseased animals were then orally treated with atorvastatin (80 mg/kg/d) or Cp (75 and 150 mg/kg/day) for 28 days during which food intake, body mass, blood pressure, heart rate, glucose, and insulin tolerance were monitored. Plasma and tissues were collected on day 29th to assess the lipid profile, oxidative stress, and inflammatory parameters. The histomorphology of the adipose tissue was also evaluated. Cp significantly (p < 0.001) reduced the obesogenic and lipid profiles, adipocyte size, blood pressure, and oxidative and inflammatory status in MSG-treated rats. Cp also ameliorated glucose (p < 0.05) and insulin sensitivities (p < 0.001) hence, reducing animals' cardiometabolic risk score (p < 0.001). The curative effect of Cp on cardiometabolic syndrome is related to its capacity to reduce oxidative stress, inflammation, dyslipidemia, and increase insulin sensitivity. These results demonstrate the potential of Cp as a good candidate for alternative treatment of CMS.
Hypoglycemic Properties of the Aqueous Extract from the Stem Bark of Ceiba pentandra in Dexamethasone-Induced Insulin Resistant Rats.[Pubmed:30305829]
Evid Based Complement Alternat Med. 2018 Sep 16;2018:4234981.
Parts of Ceiba pentandra are wildly used in Africa to treat diabetes and previous works have demonstrated their in vivo antidiabetic effects on type 1 diabetes models. In addition, it has been recently shown that the decoction and the methanol extract from the stem bark of C. pentandra potentiate in vitro, the peripheral glucose consumption by the liver and skeletal muscle slices. But nothing is known about its effect on type II diabetes, especially on insulin resistance condition. We investigated herein the antihyperglycemic, insulin-sensitizing potential, and cardioprotective effects of the dried decoction from the stem bark of Ceiba pentandra (DCP) in dexamethasone-induced insulin resistant rats. DCP phytochemical analysis using LC-MS showed the presence of many compounds, including 8-formyl-7-hydroxy-5-isopropyl-2-methoxy-3-methyl-1,4-naphthaquinone, 2,4,6-trimethoxyphenol, and Vavain. Wistar rats were given intramuscularly (i.m.) dexamethasone (1 mg/kg/day) alone or concomitantly with oral doses of DCP (75 or 150 mg/kg/day) or metformin (40 mg/kg/day) for 9 days. Parameters such as body weight, glycemia, oral glucose tolerance, plasma triglycerides and cholesterol, blood pressure, and heart rate were evaluated. Moreover, cardiac, hepatic and aortic antioxidants (reduced glutathione, catalase, and superoxide dismutase), malondialdehyde level, and nitric oxide content were determined. DCP decreased glycemia by up to 34% and corrected the impairment of glucose tolerance induced by dexamethasone but has no significant effect on blood pressure and heart rate. DCP reduced the total plasma cholesterol and triglycerides as compared to animals treated only with dexamethasone. DCP also increased catalase, glutathione, and NO levels impaired by dexamethasone, without any effect on SOD and malondialdehyde. In conclusion, the decoction of the stem bark of Ceiba pentandra has insulin sensitive effects as demonstrated by the improvement of glucose tolerance, oxidative status, and plasma lipid profile. This extract may therefore be a good candidate for the treatment of type II diabetes.
A new isoflavone glycoside from Ceiba pentandra (L.) Gaertner.[Pubmed:11911207]
Chem Pharm Bull (Tokyo). 2002 Mar;50(3):403-4.
From the 80% EtOH extract of the bark of Ceiba pentandra (L.) Gaertner, a new isoflavone glycoside was isolated along with known isoflavones, Vavain and Vavain glucoside. The structure was elucidated by spectroscopic analysis as 5-hydroxy-7,4',5'-trimethoxyisoflavone 3'-O-alpha-L-arabinofuranosyl(1-->6)-beta-D-glucopyranoside.
Two new isoflavones from Ceiba pentandra and their effect on cyclooxygenase-catalyzed prostaglandin biosynthesis.[Pubmed:9461647]
J Nat Prod. 1998 Jan;61(1):8-12.
The new isoflavone glucoside Vavain 3'-O-beta-d-glucoside (1) and its aglycon, Vavain (2), were isolated from the bark of Ceiba pentandra, together with the known flavan-3-ol, (+)-catechin, These novel structures were elucidated by one- and two-dimensional NMR experiments and by MS, IR, and UV spectroscopy as 5-hydroxy-7,4',5'-trimethoxyisoflavone 3'-O-beta-D-glucoside (1) and 5,3'-dihydroxy-7,4',5'-trimethoxyisoflavone (2), respectively. The compounds were isolated following bioactivity-directed fractionation, using a cyclooxygenase-1-catalyzed prostaglandin biosynthesis assay in vitro, in which compounds 1 and 2 and (+)-catechin exhibited IC50 values of 381, 97, and 80 microM, respectively (standard: indomethacin, IC50 1,1 microM). When further tested for their inhibitory effects on cyclooxygenase-2-catalyzed prostaglandin biosynthesis, 1 and 2 were found to be inactive (IC50 > 1200 and > 900 microM, respectively).