Products with
Neuroprotection bioactivity
Cat.No.
|
Product Name
|
BCN2609 |
Vinpocetine
|
Vinpocetine is a selective inhibitor of voltage-sensitive sodium channel for the treatment of stroke, vascular dementia and Alzheimer's disease. Vinpocetine can attenuate neointimal formation in diabetic rats and inhibit HG-induced VSMCs proliferation, chemokinesis and apoptotic resistance by preventing ROS activation and affecting MAPK, PI3K/Akt, and NF-κB signaling.Vinpocetine has anti-inflammatory activity, can treat inflammation and pain induced by a gram-negative bacterial component by targeting NF-κB activation and NF-κB-related cytokine production in macrophages. |
BCN2637 |
Phellopterin
|
Phellopterin is a partial agonist of the central benzodiazepine receptors in vitro; it shows cytotoxic effect on RAW264.7 cell at the concentration from 40 to 400 μM. Phellopterin reduces TNF-alpha-induced VCAM-1 expression through regulation of the Akt and PKC pathway, which contributes to inhibit the adhesion of monocytes to endothelium. |
BCN2638 |
Decursinol
|
Decursinol may be a beneficial antimetastatic agent, targeting MMPs and its upstream signaling molecules; it inhibits the proliferation and invasion of CT-26 colon carcinoma cells, might via downregulated ERK and JNK phosphorylation. Aspirin-decursinol has neuroprotective effects, may be closely related to the attenuation of ischemia-induced gliosis and maintenance of antioxidants. |
BCN2639 |
Juglone
|
Juglone has anti-inflammatory, and anti-cancer activities, it can significantly inhibit the proliferation and induce the apoptosis of SiHa cells and Caski cells; it prevents high-fat diet-induced liver injury and nerve inflammation in mice through inhibition of inflammatory cytokine secretion, NF-kappa B activation and endotoxin production. Juglone stimulates suicidal erythrocyte death or eryptosis at least in part by upregulation of ceramide abundance, energy depletion and activation of PKC. |
BCN2644 |
trans-Caryophyllene
|
trans-Caryophyllene, a PPAR-α agonist, which has neuroprotective effects in various neurological disorders, such as chemical induced seizure and brain damage. trans-Caryophyllene suppresses the hypoxia-induced neuroinflammatory response through inhibition of NF-κB activation in microglia.trans-Caryophyllene also reduces both acute and chronic pain in mice, which may be mediated through the opioid and endocannabinoid systems. |