(RS)-AMPACAS# 74341-63-2 |
- INCB3344
Catalog No.:BCC1648
CAS No.:1262238-11-8
- INCB8761(PF-4136309)
Catalog No.:BCC1649
CAS No.:1341224-83-6
- MK-0812
Catalog No.:BCC1755
CAS No.:624733-88-6
- INCB 3284 dimesylate
Catalog No.:BCC1646
CAS No.:887401-93-6
Quality Control & MSDS
Number of papers citing our products
Chemical structure
3D structure
Cas No. | 74341-63-2 | SDF | Download SDF |
PubChem ID | 1221 | Appearance | Powder |
Formula | C7H10N2O4 | M.Wt | 186.17 |
Type of Compound | N/A | Storage | Desiccate at -20°C |
Solubility | Soluble to 10 mM in water with gentle warming | ||
Chemical Name | 2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl)propanoic acid | ||
SMILES | CC1=C(C(=O)NO1)CC(C(=O)O)N | ||
Standard InChIKey | UUDAMDVQRQNNHZ-UHFFFAOYSA-N | ||
Standard InChI | InChI=1S/C7H10N2O4/c1-3-4(6(10)9-13-3)2-5(8)7(11)12/h5H,2,8H2,1H3,(H,9,10)(H,11,12) | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Description | Prototypical and defining agonist for the AMPA subgroup of ionotropic glutamate receptors. Active enantiomer (S)-AMPA, inactive enantiomer (R)-AMPA and hydrobromide salt (RS)-AMPA hydrobromide also available. |
(RS)-AMPA Dilution Calculator
(RS)-AMPA Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 5.3714 mL | 26.8572 mL | 53.7143 mL | 107.4287 mL | 134.2859 mL |
5 mM | 1.0743 mL | 5.3714 mL | 10.7429 mL | 21.4857 mL | 26.8572 mL |
10 mM | 0.5371 mL | 2.6857 mL | 5.3714 mL | 10.7429 mL | 13.4286 mL |
50 mM | 0.1074 mL | 0.5371 mL | 1.0743 mL | 2.1486 mL | 2.6857 mL |
100 mM | 0.0537 mL | 0.2686 mL | 0.5371 mL | 1.0743 mL | 1.3429 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- 4',4'''-Di-O-methylcupressuflavone
Catalog No.:BCN4295
CAS No.:74336-91-7
- Schisandrin A
Catalog No.:BCN5815
CAS No.:7432-28-2
- Z-Trp-OH
Catalog No.:BCC2750
CAS No.:7432-21-5
- Somatostatin 1-28
Catalog No.:BCC5715
CAS No.:74315-46-1
- Quercetin-3-gentiobioside
Catalog No.:BCN3878
CAS No.:7431-83-6
- Sinapine thiocyanate
Catalog No.:BCN2765
CAS No.:7431-77-8
- Triptophenolide
Catalog No.:BCN2546
CAS No.:74285-86-2
- 12-Oxograndiflorenic acid
Catalog No.:BCN7624
CAS No.:74284-42-7
- 7-Acetylintermedine
Catalog No.:BCN1998
CAS No.:74243-01-9
- p-Chlorophenylalanine
Catalog No.:BCC5689
CAS No.:7424-00-2
- Baogongteng A
Catalog No.:BCN1874
CAS No.:74239-84-2
- Doronenine
Catalog No.:BCN2066
CAS No.:74217-57-5
- Chidamide
Catalog No.:BCC6445
CAS No.:743420-02-2
- Ent-16Α,17-Dihydroxy-19-Kauranoic Acid
Catalog No.:BCC9227
CAS No.:74365-74-5
- 4-hydroxyephedrine hydrochloride
Catalog No.:BCC8103
CAS No.:7437-54-9
- 8-Geranyloxypsoralen
Catalog No.:BCN4296
CAS No.:7437-55-0
- Leuprolide Acetate
Catalog No.:BCC1701
CAS No.:74381-53-6
- PAF (C16)
Catalog No.:BCC7522
CAS No.:74389-68-7
- Symlandine
Catalog No.:BCN1974
CAS No.:74410-74-5
- Sauvagine
Catalog No.:BCC5792
CAS No.:74434-59-6
- Potassium Chloride
Catalog No.:BCC7581
CAS No.:7447-40-7
- Casegravol
Catalog No.:BCN4591
CAS No.:74474-76-3
- Alprostadil
Catalog No.:BCC4963
CAS No.:745-65-3
- MMAF
Catalog No.:BCC5144
CAS No.:745017-94-1
An antagonist of glutamate metabotropic receptors, (RS)-alpha-methyl-4-carboxyphenylglycine, prevents the LTP-related increase in postsynaptic AMPA sensitivity in hippocampal slices.[Pubmed:7694173]
Neuropharmacology. 1993 Sep;32(9):933-5.
(RS)-alpha-methyl-4-carboxyphenylglycine (MCPG), a compound which selectively antagonizes metabotropic glutamate receptors (mGlu-R), presents the LTP of field excitatory postsynaptic potentials (fEPSP) as well as the tetanus-induced increase in AMPA-evoked responses (fPRs) in the CA1 region of hippocampal slices. This effects of MCPG provide evidence for the involvement of mGlu-Rs in mechanisms underlying the postsynaptic maintenance of LTP, which appears to be mediated, at least partially, by an increase in sensitivity and/or number of postsynaptic AMPA receptors.
Promiscuous interactions between AMPA-Rs and MAGUKs.[Pubmed:17046684]
Neuron. 2006 Oct 19;52(2):222-4.
What controls the number of AMPA receptors at excitatory synapses? MAGUKs are known to play a critical role in this process, but which ones are involved and when has been contentious. In this issue of Neuron, Elias et al. have elucidated the roles of three MAGUKs, PSD-95, PSD-93, and SAP-102, in the targeting of AMPA receptors to synapses in hippocampal neurons.
Effects of (RS)-3,4-DCPG, a mixed AMPA antagonist/mGluR8 agonist, on aggressive behavior in mice.[Pubmed:23034312]
Rev Psiquiatr Salud Ment. 2009 Jul;2(3):133-7.
INTRODUCTION: Ionotropic and metabotropic (mGlu) receptors of glutamate have been suggested to be involved in the modulation of aggression. Thus, recent studies found reduced aggression in AMPA-type glutamate receptor GluR-A subunit-deficient mice. Likewise, mGlu1 and 5 receptors have also been implicated in aggression regulation. (RS)-3,4-DCPG is a mixed antagonist of AMPA receptors and an agonist of mGluR8. The AMPA antagonist activity of this compound is determined by its R isomer while the S isomer is responsible for its mGluR8 agonistic properties. METHODS: We analyzed the effects of (RS)-3,4-DCPG (5, 10 and 20mg/kg, ip) on agonistic encounters between male mice. Individually housed mice were exposed to anosmic opponents 30 min after drug administration. Ten min of dyadic interactions were staged between a singly housed and an anosmic mouse in a neutral area. The encounters were videotaped and the accumulated time allocated by subjects to 10 broad behavioral categories was estimated using an ethologically based analysis. RESULTS AND CONCLUSIONS: The results indicated that (RS)-3,4-DCPG produced no significant behavioral changes, suggesting that antagonism of AMPA receptors by the R isomer and stimulation of mGluR8 by the S isomer do not act synergistically on aggression in the racemic form of 3,4-DCPG.
The binding of [3H]AMPA, a structural analogue of glutamic acid, to rat brain membranes.[Pubmed:6125564]
J Neurochem. 1982 Jan;38(1):173-8.
Binding of [3H]AMPA to rat brain membranes was investigated. The binding was saturable and reversible at physiological pH. Computer-aided Scatchard analysis of the binding data, as determined by using L-glutamic acid (L-GLU) to define nonspecific binding, suggested the presence of two independent binding sites, with KDS of 9 and 2440 nM, respectively. Additional freezing, thawing and washing sequences gave membranes with only one binding site, with a KD of 278 nM. [3H]AMPA binding exhibited the highest level in striatal membranes. A series of analogues of GLU and aspartic acid (ASP) were tested as inhibitors of [3H]AMPA binding. L-ASP and compounds which interact predominantly with N-methyl-D-aspartic acid (NMDA) receptor sites were inactive as inhibitors of [3H]AMPA binding, whereas L-GLU and compounds which interact predominantly with glutamic acid diethyl ester receptor sites were inhibitors with the same order of potency as that shown by the excitatory action in vivo. The result suggests that [3H]AMPA might represent binding to an excitatory GLU receptor.