7,3'-Dihydroxy-5'-methoxyisoflavoneCAS# 947611-61-2 |
Quality Control & MSDS
Number of papers citing our products
Chemical structure
3D structure
Cas No. | 947611-61-2 | SDF | Download SDF |
PubChem ID | 66728338 | Appearance | Yellow powder |
Formula | C16H12O5 | M.Wt | 284.3 |
Type of Compound | Flavonoids | Storage | Desiccate at -20°C |
Solubility | Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc. | ||
Chemical Name | 7-hydroxy-3-(3-hydroxy-5-methoxyphenyl)chromen-4-one | ||
SMILES | COC1=CC(=CC(=C1)O)C2=COC3=C(C2=O)C=CC(=C3)O | ||
Standard InChIKey | CJAXVEMKKDGDQM-UHFFFAOYSA-N | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Description | 1. 7,3'-Dihydroxy-5'-methoxyisoflavone shows moderate activity against the renal, melanoma and breast cancer cell lines. 2. 7,3'-Dihydroxy-5'-methoxyisoflavone may have a synergistic effect with other anticancer drugs. |
7,3'-Dihydroxy-5'-methoxyisoflavone Dilution Calculator
7,3'-Dihydroxy-5'-methoxyisoflavone Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 3.5174 mL | 17.5871 mL | 35.1741 mL | 70.3482 mL | 87.9353 mL |
5 mM | 0.7035 mL | 3.5174 mL | 7.0348 mL | 14.0696 mL | 17.5871 mL |
10 mM | 0.3517 mL | 1.7587 mL | 3.5174 mL | 7.0348 mL | 8.7935 mL |
50 mM | 0.0703 mL | 0.3517 mL | 0.7035 mL | 1.407 mL | 1.7587 mL |
100 mM | 0.0352 mL | 0.1759 mL | 0.3517 mL | 0.7035 mL | 0.8794 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- Salmeterol xinafoate
Catalog No.:BCC1920
CAS No.:94749-08-3
- Fmoc-Aib-OH
Catalog No.:BCC3149
CAS No.:94744-50-0
- PF 429242
Catalog No.:BCC6009
CAS No.:947303-87-9
- Gypenoside XLVI
Catalog No.:BCN3863
CAS No.:94705-70-1
- Rhodiolgin; Gossypetin-7-O-α-rhamnopyranoside
Catalog No.:BCC8247
CAS No.:94696-39-6
- MNI 137
Catalog No.:BCC6156
CAS No.:946619-21-2
- Hyperectine
Catalog No.:BCN3406
CAS No.:94656-46-9
- LY2409881
Catalog No.:BCC5650
CAS No.:946518-60-1
- RN 1734
Catalog No.:BCC7770
CAS No.:946387-07-1
- Mulberrofuran K
Catalog No.:BCN7188
CAS No.:94617-36-4
- RO5126766(CH5126766)
Catalog No.:BCC6374
CAS No.:946128-88-7
- LX-1031
Catalog No.:BCC1712
CAS No.:945976-76-1
- WWL 70
Catalog No.:BCC4011
CAS No.:947669-91-2
- TCFH
Catalog No.:BCC2824
CAS No.:94790-35-9
- HBTU
Catalog No.:BCC2814
CAS No.:94790-37-1
- ML365
Catalog No.:BCC8063
CAS No.:947914-18-3
- 3-pyr-Cytisine
Catalog No.:BCC6118
CAS No.:948027-43-8
- Bruceantinol A
Catalog No.:BCN8003
CAS No.:948038-36-6
- Bruceine J
Catalog No.:BCN8001
CAS No.:948038-38-8
- 20(R)-Notoginsenoside R2
Catalog No.:BCN3864
CAS No.:948046-15-9
- Glycycoumarin
Catalog No.:BCN7685
CAS No.:94805-82-0
- Isolicoflavonol
Catalog No.:BCN4554
CAS No.:94805-83-1
- Tie2 kinase inhibitor
Catalog No.:BCC2561
CAS No.:948557-43-5
- Acuminatanol
Catalog No.:BCN6866
CAS No.:948884-38-6
Isoflavones from Calpurnia Aurea subsp. aurea and their anticancer activity.[Pubmed:25395701]
Afr J Tradit Complement Altern Med. 2014 Aug 23;11(5):33-7. eCollection 2014.
BACKGROUND: Calpurnia aurea is an African medicinal plant used in many countries in Africa to treat a range of medical conditions or disorders. Extracts of the plant were shown to be active in antibacterial and antioxidant assays as well as against lice, ticks and maggots. The aim of the study was to isolate the phytochemical constituents from the plant and to test them in appropriate bioassays dependent on the compounds isolated in order to provide a rationale for the use of the plant in ethno-medicine or to provide some information on its constituents. MATERIALS AND METHODS: The stem and bark of the plant was extracted with organic solvents of varying polarity and the extracts separated and purified using column chromatography. The isolated compounds were identified by NMR spectroscopy and the compounds were tested for their in vitro anticancer activity against breast (MCF7), renal (TK10) and melanoma (UACC62) human cell lines using an in house method developed at the CSIR, South Africa. RESULTS: The isoflavones, 4',5,7-trihydroxyisoflavone (1), 7,3'-dihydroxy-5'-methoxyisoflavone (2), 7-hydroxy-4',8-dimethoxyisoflavone (3), 7-acetoxy-4',8-dimethoxyisoflavone (4) and 3',7-dihydroxy-4',8-dimethoxyisoflavone (5), a pterocarpan (3-acetoxy-9-methoxypterocarpan) and a quinolizidine alkaloid (calpurnine) were isolated from the stem and bark of Calpurnia aurea. The tetrasubstituted isoflavone 5 was found to be the most active in the three cell lines amongst all the compounds tested. This was followed by trisubstituted isoflavone 2. CONCLUSION: The isoflavones showed moderate activity against the renal, melanoma and breast cancer cell lines tested against, with the isoflavones 2 and 5 showing the best activity of the compounds tested. These isoflavones may have a synergistic effect with other anticancer drugs.