Ac-Pro-OHCAS# 68-95-1 |
2D Structure
- Amyloid β-Protein (1-15)
Catalog No.:BCC1003
CAS No.:183745-81-5
- Beta-Amyloid (1-11)
Catalog No.:BCC1002
CAS No.:190436-05-6
Quality Control & MSDS
3D structure
Package In Stock
Number of papers citing our products
Cas No. | 68-95-1 | SDF | Download SDF |
PubChem ID | 322640 | Appearance | Powder |
Formula | C7H11NO3 | M.Wt | 157.2 |
Type of Compound | N/A | Storage | Desiccate at -20°C |
Solubility | Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc. | ||
Chemical Name | 1-acetylpyrrolidine-2-carboxylic acid | ||
SMILES | CC(=O)N1CCCC1C(=O)O | ||
Standard InChIKey | GNMSLDIYJOSUSW-UHFFFAOYSA-N | ||
Standard InChI | InChI=1S/C7H11NO3/c1-5(9)8-4-2-3-6(8)7(10)11/h6H,2-4H2,1H3,(H,10,11) | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Ac-Pro-OH Dilution Calculator
Ac-Pro-OH Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 6.3613 mL | 31.8066 mL | 63.6132 mL | 127.2265 mL | 159.0331 mL |
5 mM | 1.2723 mL | 6.3613 mL | 12.7226 mL | 25.4453 mL | 31.8066 mL |
10 mM | 0.6361 mL | 3.1807 mL | 6.3613 mL | 12.7226 mL | 15.9033 mL |
50 mM | 0.1272 mL | 0.6361 mL | 1.2723 mL | 2.5445 mL | 3.1807 mL |
100 mM | 0.0636 mL | 0.3181 mL | 0.6361 mL | 1.2723 mL | 1.5903 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
Ac-Pro-OH
- Hypoxanthine
Catalog No.:BCC5324
CAS No.:68-94-0
- Metamizole sodium
Catalog No.:BCC9024
CAS No.:68-89-3
- Hydroxyzine
Catalog No.:BCC5209
CAS No.:68-88-2
- Sulfadiazine
Catalog No.:BCC3859
CAS No.:68-35-9
- Vitamin A
Catalog No.:BCN8349
CAS No.:68-26-8
- Norethindrone
Catalog No.:BCC4811
CAS No.:68-22-4
- Vitamin B12
Catalog No.:BCC4878
CAS No.:68-19-9
- Sodium citrate
Catalog No.:BCC7588
CAS No.:68-04-2
- BMS 193885
Catalog No.:BCC7613
CAS No.:679839-66-8
- N-(15-Methyl-9-hexadecenoyl)taurine
Catalog No.:BCN1754
CAS No.:679834-30-1
- N-(5,8,11,14-Eicosatetraenoyl)taurine
Catalog No.:BCN1755
CAS No.:679834-28-7
- Aurantio-obtusin
Catalog No.:BCN1222
CAS No.:67979-25-3
- Hydroxyprogesterone
Catalog No.:BCC8996
CAS No.:68-96-2
- Magnocurarine
Catalog No.:BCN3839
CAS No.:6801-40-7
- Pulsatilla saponin H
Catalog No.:BCN8181
CAS No.:68027-14-5
- Pulsatilla saponin D
Catalog No.:BCN8526
CAS No.:68027-15-6
- Carbadox
Catalog No.:BCC3744
CAS No.:6804-07-5
- (Z)-4-Hydroxytamoxifen
Catalog No.:BCC6015
CAS No.:68047-06-3
- Escin
Catalog No.:BCC8323
CAS No.:6805-41-0
- Platyconic acid A
Catalog No.:BCN3239
CAS No.:68051-23-0
- EMPA
Catalog No.:BCC6226
CAS No.:680590-49-2
- Megastigm-7-ene-3,5,6,9-tetraol
Catalog No.:BCN5169
CAS No.:680617-50-9
- Trifolirhizin
Catalog No.:BCN4237
CAS No.:6807-83-6
- Norfloxacin hydrochloride
Catalog No.:BCC4230
CAS No.:68077-27-0
NMR conformational analysis of cis and trans proline isomers in the neutrophil chemoattractant, N-acetyl-proline-glycine-proline.[Pubmed:11246204]
Biopolymers. 2001 May;58(6):548-61.
Alkaline hydrolysis of corneal proteins in the alkali-injured eye releases N-acetyl-proline-glycine-proline (Ac-Pro-Gly-Pro-OH) among other peptides. It has been shown that this tripeptide is a neutrophil chemoattractant. Existing data suggest that the release of this peptide is the catalytic event for early neutrophil invasion of the cornea leading to corneal ulcers. In order to design inhibitors of this tripeptide chemoattractant that would block neutrophil invasion and diminish corneal ulcers, we studied the solution properties of this tripeptide by NMR spectroscopy and compared this peptide to Ac-Pro-Gly-OH (a weaker chemoattractant), and to Ac-Pro-OH (inactive). The NMR data were consistent with Ac-Pro-Gly-Pro-OH existing in solution as a mixture of four isomers with different cis and trans conformations about the two X-proline amide bonds. The isomer with two trans conformations (trans-trans) was the most dominant (41%) in aqueous solution. This was followed by the isomers with mixed cis and trans conformations (trans-cis, 26% and cis-trans, 20%). The isomer with two cis conformations (cis-cis) was the least favored (13%). The populations of these isomers were investigated in DMSO and they were similar to those reported in aqueous solutions except that the ordering of the trans-cis and cis-trans isomers were reversed. NMR NH temperature coefficients and nuclear Overhauser effect (NOE) measurements as well as CD spectroscopy were used to demonstrate that the four isomers exist primarily in an extended conformation with little hydrogen bonding. The available (NOE) information was used with molecular dynamics calculations to construct a dominant solution conformation for each isomer of the tripeptide. This information will serve as a model for the design of peptide and nonpeptide inhibitors of the chemoattractant.