Acesulfame PotassiumCAS# 55589-62-3 |
2D Structure
- Etifoxine
Catalog No.:BCC1560
CAS No.:21715-46-8
- Etomidate
Catalog No.:BCC1150
CAS No.:33125-97-2
- Etifoxine hydrochloride
Catalog No.:BCC1561
CAS No.:56776-32-0
- Flumazenil
Catalog No.:BCC1259
CAS No.:78755-81-4
Quality Control & MSDS
3D structure
Package In Stock
Number of papers citing our products
Cas No. | 55589-62-3 | SDF | Download SDF |
PubChem ID | 45489782 | Appearance | Powder |
Formula | C4H4KNO4S | M.Wt | 201.2 |
Type of Compound | N/A | Storage | Desiccate at -20°C |
Solubility | Soluble in DMSO > 10 mM | ||
Chemical Name | potassium;6-methyl-2-oxido-2-oxo-1-oxa-2$l^{6}-thia-3-azacyclohexa-2,5-dien-4-one | ||
SMILES | CC1=CC(=O)N=S(=O)(O1)[O-].[K+] | ||
Standard InChIKey | JLEKLYQXZHJOTQ-UHFFFAOYSA-M | ||
Standard InChI | InChI=1S/C4H5NO4S.K/c1-3-2-4(6)5-10(7,8)9-3;/h2H,1H3,(H,5,6,7,8);/q;+1/p-1 | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Acesulfame Potassium Dilution Calculator
Acesulfame Potassium Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 4.9702 mL | 24.8509 mL | 49.7018 mL | 99.4036 mL | 124.2545 mL |
5 mM | 0.994 mL | 4.9702 mL | 9.9404 mL | 19.8807 mL | 24.8509 mL |
10 mM | 0.497 mL | 2.4851 mL | 4.9702 mL | 9.9404 mL | 12.4254 mL |
50 mM | 0.0994 mL | 0.497 mL | 0.994 mL | 1.9881 mL | 2.4851 mL |
100 mM | 0.0497 mL | 0.2485 mL | 0.497 mL | 0.994 mL | 1.2425 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
Acesulfame potassium is a non-nutritive sweetener.
- Agrimol B
Catalog No.:BCN5017
CAS No.:55576-66-4
- Boc-Phe(4-NH2)-OH
Catalog No.:BCC3153
CAS No.:55533-24-9
- H-1-Nal-OH
Catalog No.:BCC3282
CAS No.:55516-54-6
- Biondinin C
Catalog No.:BCN5744
CAS No.:55511-08-5
- 6-Shogaol
Catalog No.:BCN6288
CAS No.:555-66-8
- CCCP
Catalog No.:BCC5658
CAS No.:555-60-2
- Tritetradecanoin
Catalog No.:BCN8389
CAS No.:555-45-3
- Methyldopa
Catalog No.:BCC4676
CAS No.:555-30-6
- Myriceric acid B
Catalog No.:BCN5743
CAS No.:55497-79-5
- Nepetoidin B
Catalog No.:BCN7082
CAS No.:55486-06-1
- Mollugin
Catalog No.:BCN5742
CAS No.:55481-88-4
- Isosaxalin
Catalog No.:BCN5741
CAS No.:55481-86-2
- H-D-Tyr-OH
Catalog No.:BCC3134
CAS No.:556-02-5
- Alliin
Catalog No.:BCN3869
CAS No.:556-27-4
- Alverine Citrate
Catalog No.:BCC4619
CAS No.:5560-59-8
- 1-Oxo-4-hydroxy-2-en-4-ethylcyclohexa-5,8-olide
Catalog No.:BCN1417
CAS No.:55604-88-1
- Aristololactam II
Catalog No.:BCN8095
CAS No.:55610-00-9
- Cepharadione A
Catalog No.:BCN3950
CAS No.:55610-01-0
- Cepharadione B
Catalog No.:BCN6524
CAS No.:55610-02-1
- Syneilesine
Catalog No.:BCN2144
CAS No.:55652-65-8
- Deltonin
Catalog No.:BCC8933
CAS No.:55659-75-1
- Boc-D-Thr-OH
Catalog No.:BCC3453
CAS No.:55674-67-4
- TCN 213
Catalog No.:BCC6123
CAS No.:556803-08-8
- 1-Octacosanol
Catalog No.:BCN2973
CAS No.:557-61-9
Sweetener Intake by Rats Selectively Bred for Differential Saccharin Intake: Sucralose, Stevia, and Acesulfame Potassium.[Pubmed:28334357]
Chem Senses. 2017 Jun 1;42(5):381-392.
Behavioral responses to sweeteners have been used to study the evolution, mechanisms, and functions of taste. Occidental low and high saccharin consuming rats (respectively, LoS and HiS) have been selectively outbred on the basis of saccharin intake and are a valuable tool for studying variation among individuals in sweetener intake and its correlates. Relative to HiS rats, LoS rats consume smaller amounts of all nutritive and nonnutritive sweeteners tested to date, except aspartame. The lines also differ in intake of the commercial product Splenda; the roles of sucralose and saccharides in the difference are unclear. The present study extends prior work by examining intake of custom mixtures of sucralose, maltodextrin, and sugars and Splenda by LoS and HiS rats (Experiment 1A-1D), stevia and a constituent compound (rebaudioside A; Experiment 2A-2E), and Acesulfame Potassium tested at several concentrations or with 4 other sweeteners at one concentration each (Experiment 3A-3B). Results indicate that aversive side tastes limit intake of Splenda, stevia, and Acesulfame Potassium, more so among LoS rats than among HiS rats. In addition, regression analyses involving 5 sweeteners support the idea that both sweetness and bitterness are needed to account for intake of nonnutritive sweeteners, more so among LoS rats. These findings contribute to well developed and emerging literatures on sweetness and domain-general processes related to gustation.
Quantification of acesulfame potassium in processed foods by quantitative 1H NMR.[Pubmed:25281163]
Talanta. 2015 Jan;131:712-8.
Acesulfame Potassium (AceK), a high-intensity and non-caloric artificial sweetener, is used in various processed foods as a food additive. In this study, we established and validated a method for determining the AceK content in various processed foods by solvent extraction and quantitative (1)H NMR, using a certified reference material as the internal standard. In the recovery test, the proposed method gave satisfactory recoveries (88.4-99.6%) and repeatabilities (0.6-5.6%) for various processed foods. The limit of quantification was confirmed as 0.13 g kg(-1), which was sufficiently low for the purposes of monitoring AceK levels. In the analysis of commercially processed foods containing AceK, all AceK contents determined by the proposed method were in good agreement with those obtained by a conventional method based on dialysis and HPLC. Moreover, this method can achieve rapid quantification and yields analytical data with traceability to the International System of Units (SI) without the need for an authentic analyte standard. Therefore, the proposed method is a useful and practical tool for the determination of AceK in processed foods.
[Development of a New Method for Determination of Sodium Saccharin and Acesulfame Potassium with the Aid of Coagulant].[Pubmed:26537649]
Shokuhin Eiseigaku Zasshi. 2015;56(5):200-4.
An HPLC method for determination of sodium saccharin and Acesulfame Potassium was newly developed, employing coagulant pretreatment to remove particles dispersed in the sample extract. The method showed recovery of 96-101% for both analytes with a repeatability of less than 1% and a reproducibility of less than 2%. The limit of quantification for sodium saccharin was 0.025 g/kg and that for Acesulfame Potassium was 0.025 g/kg. Only about 20 min was required for preparation of the test solution, whereas the dialysis method takes much longer.