CentrolobolCAS# 30359-01-4 |
Quality Control & MSDS
Number of papers citing our products
Chemical structure
3D structure
Cas No. | 30359-01-4 | SDF | Download SDF |
PubChem ID | 11771038 | Appearance | Oil |
Formula | C19H24O3 | M.Wt | 300.4 |
Type of Compound | Phenols | Storage | Desiccate at -20°C |
Solubility | Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc. | ||
Chemical Name | 4-[(5R)-5-hydroxy-7-(4-hydroxyphenyl)heptyl]phenol | ||
SMILES | C1=CC(=CC=C1CCCCC(CCC2=CC=C(C=C2)O)O)O | ||
Standard InChIKey | UYJAYWZGEZOHRU-QGZVFWFLSA-N | ||
Standard InChI | InChI=1S/C19H24O3/c20-17(10-7-16-8-13-19(22)14-9-16)4-2-1-3-15-5-11-18(21)12-6-15/h5-6,8-9,11-14,17,20-22H,1-4,7,10H2/t17-/m1/s1 | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Description | 1. (-)-Centrolobol has antifibrotic activity, it can significantly inhibit the proliferation of HSC-T6 cells in a dose-dependent manner. 2. Centrolobol exhibits strong cytotoxic activity against KB cell line. |
Targets | Caspase |
Centrolobol Dilution Calculator
Centrolobol Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 3.3289 mL | 16.6445 mL | 33.2889 mL | 66.5779 mL | 83.2224 mL |
5 mM | 0.6658 mL | 3.3289 mL | 6.6578 mL | 13.3156 mL | 16.6445 mL |
10 mM | 0.3329 mL | 1.6644 mL | 3.3289 mL | 6.6578 mL | 8.3222 mL |
50 mM | 0.0666 mL | 0.3329 mL | 0.6658 mL | 1.3316 mL | 1.6644 mL |
100 mM | 0.0333 mL | 0.1664 mL | 0.3329 mL | 0.6658 mL | 0.8322 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- TAK-715
Catalog No.:BCC3968
CAS No.:303162-79-0
- Picrasin B acetate
Catalog No.:BCN5215
CAS No.:30315-04-9
- Pandamarilactonine B
Catalog No.:BCN5214
CAS No.:303008-81-3
- Pandamarilactonine A
Catalog No.:BCN5213
CAS No.:303008-80-2
- Coenzyme Q10
Catalog No.:BCN5954
CAS No.:303-98-0
- Ochratoxin A
Catalog No.:BCC7008
CAS No.:303-47-9
- Gossypol
Catalog No.:BCN2702
CAS No.:303-45-7
- Methenolone enanthate
Catalog No.:BCC9029
CAS No.:303-42-4
- Lasiocarpine
Catalog No.:BCN2001
CAS No.:303-34-4
- Heliotrine
Catalog No.:BCN1982
CAS No.:303-33-3
- Clinofibrate
Catalog No.:BCC5020
CAS No.:30299-08-2
- 2-Amino-N-(2-chloro-6-methylphenyl) thiazole-5-carboxamide
Catalog No.:BCC8551
CAS No.:302964-24-5
- Dalbergioidin
Catalog No.:BCN4801
CAS No.:30368-42-4
- L-779,450
Catalog No.:BCC7593
CAS No.:303727-31-3
- U 18666A
Catalog No.:BCC7136
CAS No.:3039-71-2
- Reutericyclin
Catalog No.:BCN1855
CAS No.:303957-69-9
- Hydralazine HCl
Catalog No.:BCC4911
CAS No.:304-20-1
- Harmaline
Catalog No.:BCN5218
CAS No.:304-21-2
- LU AA33810
Catalog No.:BCC7708
CAS No.:304008-29-5
- Corydalmine
Catalog No.:BCN5217
CAS No.:30413-84-4
- Pelirine
Catalog No.:BCN4077
CAS No.:30435-26-8
- Toxicarolisoflavone
Catalog No.:BCN6468
CAS No.:3044-60-8
- Dynasore
Catalog No.:BCC1088
CAS No.:304448-55-3
- AVE 0991
Catalog No.:BCC4032
CAS No.:304462-19-9
Antifibrotic activity of diarylheptanoids from Betula platyphylla toward HSC-T6 cells.[Pubmed:22972321]
Biosci Biotechnol Biochem. 2012;76(9):1616-20.
A chemical investigation of the n-butanol fraction of the inner bark of Betula platyphylla led to the isolation of seven diarylhepanoids, (-)-Centrolobol (1), aceroside VII (2), aceroside VIII (3), (3R)-1,7-bis-(4-hydroxyphenyl)-3-heptanol-3-O-[2,6-bis-O-(beta-D-apiofuranosyl)-b eta-D-glucopyranoside (4), 1,7-bis-(4-hydroxyphenyl)-5-hepten-3-one (5), platyphyllone (6) and platyphylloside (7). The antifibrotic effects of these isolates were evaluated with HSC-T6 cells by assessing cell proliferation. Among them, compounds 1, 2, 5 and 6 significantly inhibited the proliferation of HSCs in a dose-dependent manner at concentrations from 10 microM to 100 microM. Compound 5 in particular dramatically decreased the collagen content and increased the Caspase-3/7 activity. Taken together, the antifibrotic activity of B. platyphylla and its constituents might suggest therapeutic potential against liver fibrosis.
Aceroside VIII is a new natural selective HDAC6 inhibitor that synergistically enhances the anticancer activity of HDAC inhibitor in HT29 cells.[Pubmed:25590368]
Planta Med. 2015 Feb;81(3):222-7.
The identification of new isoform-specific histone deacetylase inhibitors is important for revealing the biological functions of individual histone deacetylase and for determining their potential use as therapeutic agents. Among the 11 zinc-dependent histone deacetylases that have been identified in humans, histone deacetylase 6 is a structurally and functionally unique enzyme. Here, we tested the inhibitory activity of diarylheptanoids isolated from Betula platyphylla against histone deacetylase 6. Aceroside VIII selectively inhibited histone deacetylase 6 catalytic activity and the combined treatment of aceroside VIII or (-)-Centrolobol with A452, another selective histone deacetylase 6 inhibitor, led to a synergistic increase in levels of acetylated alpha-tubulin. Aceroside VIII, paltyphyllone, and (-)-Centrolobol synergistically enhanced the induction of apoptosis and growth inhibition by A452. Consistent with these results, A452 in combination with aceroside VIII, paltyphyllone, or (-)-Centrolobol was more potent than either drug alone for the induction of apoptosis. Together, these findings indicate that aceroside VIII is a specific histone deacetylase 6 inhibitor and points to a mechanism by which natural histone deacetylase 6-selective inhibitors may enhance the efficacy of other histone deacetylase 6 inhibitors in colon cancer cells.
Identification of centrolobol as the platyphylloside metabolite responsible for the observed effect on in vitro digestibility of hay.[Pubmed:15366834]
J Agric Food Chem. 2004 Sep 22;52(19):5869-72.
Syntheses of the metabolites from platyphylloside, a phenol causing digestibility inhibition in rumen fluid, have been performed to identify the active metabolite. 1,7-Bis(4'-hydroxyphenyl)-3-heptanone (3-platyphyllone), racemic, and the two enantiomers of 1,7-bis(4'-hydroxyphenyl)-3-heptanol (Centrolobol) and 1,7-bis(4-hydroxyphenyl)heptane (platyphyllane) were synthesized and tested regarding digestibility inhibition in vitro in cow rumen fluid. All compounds tested induced a decreased digestion. Centrolobol was found to be the metabolite causing the observed effect, and (R)-Centrolobol was found to be the enantiomer formed in the rumen liquor in vitro.