Corosolic acidCAS# 4547-24-4 |
- 3-Epicorosolic acid
Catalog No.:BCN5666
CAS No.:52213-27-1
Quality Control & MSDS
Number of papers citing our products
Chemical structure
3D structure
Cas No. | 4547-24-4 | SDF | Download SDF |
PubChem ID | 165244 | Appearance | White powder |
Formula | C30H48O4 | M.Wt | 472.7 |
Type of Compound | Triterpenoids | Storage | Desiccate at -20°C |
Synonyms | Colosic acid; Colosolic acid; Corsolic acid; Glucosol | ||
Solubility | DMSO : ≥ 50 mg/mL (105.78 mM) H2O : < 0.1 mg/mL (insoluble) *"≥" means soluble, but saturation unknown. | ||
Chemical Name | (1S,2R,4aS,6aR,6aS,6bR,10R,11R,12aR,14bR)-10,11-dihydroxy-1,2,6a,6b,9,9,12a-heptamethyl-2,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydro-1H-picene-4a-carboxylic acid | ||
SMILES | CC1CCC2(CCC3(C(=CCC4C3(CCC5C4(CC(C(C5(C)C)O)O)C)C)C2C1C)C)C(=O)O | ||
Standard InChIKey | HFGSQOYIOKBQOW-MMNUXRFXSA-N | ||
Standard InChI | InChI=1S/C30H48O4/c1-17-10-13-30(25(33)34)15-14-28(6)19(23(30)18(17)2)8-9-22-27(5)16-20(31)24(32)26(3,4)21(27)11-12-29(22,28)7/h8,17-18,20-24,31-32H,9-16H2,1-7H3,(H,33,34)/t17-,18+,20-,21?,22-,23-,24+,27+,28-,29-,30+/m1/s1 | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Description | Corosolic acid has antitumor, anti-inflammatory and hypoglycemic activities, it can ameliorate hypertension, abnormal lipid metabolism, and oxidative stress as well as the inflammatory state in SHR-cp rats; it can improve glucose metabolism by reducing insulin resistance, it inhibits the enzymatic activities of several diabetes-related non-receptor protein tyrosine phosphatases (PTPs) in vitro, such as PTP1B, T-cell-PTP, src homology phosphatase-1 and src homology phosphatase-2. Corosolic acid can suppress the M2 polarization of macrophages and tumor cell proliferation by inhibiting both STAT3 and NF-κB activation, it also can enhance the antitumor effects of adriamycin and cisplatin in in vitro. |
Targets | FAK | ERK | Caspase | PARP | VEGFR | Src | Bcl-2/Bax | NF-κB | STAT | PTPs |
In vitro | Microbial transformation of the anti-diabetic agent corosolic acid.[Pubmed: 25190540]Nat Prod Res. 2014;28(21):1879-86.
|
In vivo | Corosolic Acid Exhibits Anti-angiogenic and Anti-lymphangiogenic Effects on In Vitro Endothelial Cells and on an In Vivo CT-26 Colon Carcinoma Animal Model.[Pubmed: 25644809]Phytother Res. 2015 May;29(5):714-23.We describe the anti-angiogenic and anti-lymphangiogenic effects of Corosolic acid, a pentacyclic triterpenoid isolated from Cornus kousa Burg.
|
Kinase Assay | Corosolic Acid Inhibits Hepatocellular Carcinoma Cell Migration by Targeting the VEGFR2/Src/FAK Pathway.[Pubmed: 25978354 ]Ursolic acid and its natural derivative corosolic acid suppress the proliferation of APC-mutated colon cancer cells through promotion of β-catenin degradation.[Pubmed: 24566423]Food Chem Toxicol. 2014 May;67:87-95.Ursolic acid (UA) and Corosolic acid (CA), naturally occurring pentacyclic triterpene acids, exhibit antiproliferative activities against various cancer cells, but a clear chemopreventive mechanism of these triterpenoids in colon cancer cells remains to be answered.
PLoS One. 2015 May 15;10(5):e0126725.Inhibition of VEGFR2 activity has been proposed as an important strategy for the clinical treatment of hepatocellular carcinoma (HCC).
|
Cell Research | Corosolic acid induces apoptotic cell death in HCT116 human colon cancer cells through a caspase-dependent pathway.[Pubmed: 24481288]Int J Mol Med. 2014 Apr;33(4):943-9.
Corosolic acid (CA), a pentacyclic triterpene isolated from Lagerstroemia speciosa L. (also known as Banaba), has been shown to exhibit anticancer properties in various cancer cell lines. However, the anticancer activity of CA on human colorectal cancer cells and the underlying mechanisms remain to be elucidated.
|
Corosolic acid Dilution Calculator
Corosolic acid Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 2.1155 mL | 10.5775 mL | 21.1551 mL | 42.3101 mL | 52.8877 mL |
5 mM | 0.4231 mL | 2.1155 mL | 4.231 mL | 8.462 mL | 10.5775 mL |
10 mM | 0.2116 mL | 1.0578 mL | 2.1155 mL | 4.231 mL | 5.2888 mL |
50 mM | 0.0423 mL | 0.2116 mL | 0.4231 mL | 0.8462 mL | 1.0578 mL |
100 mM | 0.0212 mL | 0.1058 mL | 0.2116 mL | 0.4231 mL | 0.5289 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
Corosolic acid isolated from the fruit of Cratoegus pinnatifida var. psilosa, was reported to have anticancer activity. IC50 value: 26.8 μg/ml in vitro Target: In vitro: Corosolic acid displayed about the same potent cytotoxic activity as ursolic acid against several human cancer cell lines. In addition, the compound displayed antagonistic activity against the phorbol ester-induced morphological modification of K-562 leukemic cells, indicating the suppression of protein kinase C (PKC) activity by the cytotoxic compound. The compound showed PKC inhibition with dose-dependent pattern in an in vitro PKC assay [1]. MTT method was used to detect the influence of corosolic acid on A549 lung cancer cell growth in vitro under different concentrations. The value of IC50 was 26.8 μg/ml in vitro experiment. Corosolic acid of different doses had certain therapeutic effects on A549 solid tumor, the content of VEGF and CD34 proteins also had different degrees of influence [2]. Corosolic acid induced apoptosis in CT-26 cells, mediated by the activation of caspase-3. It inhibited the proliferation and tube formation of human umbilical vein endothelial cells and human dermal lymphatic microvascular endothelial cells, decreased the proliferation and migration of human umbilical vein endothelial cells stimulated by angiopoietin-1 [3]. In vivo: A mouse colon carcinoma CT-26 animal model was employed to determine the in vivo anti-angiogenic and anti-lymphangiogenic effects of corosolic acid.
References:
[1]. Ahn KS, et al. Corosolic acid isolated from the fruit of Crataegus pinnatifida var. psilosa is a protein kinase C inhibitor as well as a cytotoxic agent. Planta Med. 1998 Jun;64(5):468-70.
[2]. LI Biao, et al. Mechanism of antitumor action of corosolic acid. China Journal of Modern Medicine,
2015-08
[3]. Ki Hyun Yoo, et al. Corosolic Acid Exhibits Anti-angiogenic and Anti-lymphangiogenic Effects on In Vitro Endothelial Cells and on an In Vivo CT-26 Colon Carcinoma Animal Model. Phytotherapy Research, 2015
, 29 (5): 14–723
- Acetophenone tosylhydrazone
Catalog No.:BCC8804
CAS No.:4545-21-5
- kobe2602
Catalog No.:BCC5291
CAS No.:454453-49-7
- Nudifloside D
Catalog No.:BCN7005
CAS No.:454212-54-5
- PSB 11 hydrochloride
Catalog No.:BCC7239
CAS No.:453591-58-7
- Motesanib
Catalog No.:BCC1776
CAS No.:453562-69-1
- Saprirearine
Catalog No.:BCN3980
CAS No.:453518-30-4
- Boc-Gly-OH
Catalog No.:BCC3396
CAS No.:4530-20-5
- Boc-DL-Phe-OH
Catalog No.:BCC3434
CAS No.:4530-18-1
- GW788388
Catalog No.:BCC3666
CAS No.:452342-67-5
- SU14813 double bond Z
Catalog No.:BCC1972
CAS No.:452105-23-6
- Boc-N-Me-Val-OH
Catalog No.:BCC3357
CAS No.:45170-31-8
- AV-412
Catalog No.:BCC5119
CAS No.:451493-31-5
- Grossamide K
Catalog No.:BCC4547
CAS No.:
- 4-Benzoyl-3-methyl-1-phenyl-5-pyrazolone
Catalog No.:BCC8695
CAS No.:4551-69-3
- Isovouacapenol C
Catalog No.:BCN6557
CAS No.:455255-15-9
- Zaurategrast
Catalog No.:BCC2070
CAS No.:455264-31-0
- H-Glu(OBzl)-OBzl.HCl
Catalog No.:BCC2927
CAS No.:4561-10-8
- Neocnidilide
Catalog No.:BCN8174
CAS No.:4567-33-3
- 3-Benzyl-5-(2-hydroxyethyl)-4-methylthiazolium chloride
Catalog No.:BCC8625
CAS No.:4568-71-2
- 5-O-Methylgenistein
Catalog No.:BCN7714
CAS No.:4569-98-6
- 1alpha, 24, 25-Trihydroxy VD2
Catalog No.:BCC1298
CAS No.:457048-34-9
- Pyridone 6
Catalog No.:BCC1874
CAS No.:457081-03-7
- PA 452
Catalog No.:BCC8005
CAS No.:457657-34-0
- BMS 470539 dihydrochloride
Catalog No.:BCC7850
CAS No.:457893-92-4
Ursolic acid and its natural derivative corosolic acid suppress the proliferation of APC-mutated colon cancer cells through promotion of beta-catenin degradation.[Pubmed:24566423]
Food Chem Toxicol. 2014 May;67:87-95.
Ursolic acid (UA) and Corosolic acid (CA), naturally occurring pentacyclic triterpene acids, exhibit antiproliferative activities against various cancer cells, but a clear chemopreventive mechanism of these triterpenoids in colon cancer cells remains to be answered. Here we used a cell-based reporter system for detection of beta-catenin response transcription (CRT) to identify UA as an antagonist of the Wnt/beta-catenin pathway. UA promoted the degradation of intracellular beta-catenin that was accompanied by its N-terminal phosphorylation at Ser33/37/Thr41 residues, marking it for proteasomal degradation. Consistently, UA down-regulated the intracellular beta-catenin level in colon cancer cells with inactivating mutations of adenomatous polyposis coli (APC). In addition, UA repressed the expression of beta-catenin/T-cell factor (TCF)-dependent genes, thereby inhibiting cell proliferation in colon cancer cells. The functional group analysis revealed that the major structural requirements for UA-mediated beta-catenin degradation are a carboxyl group at position 17 and a methyl group at position 19. Notably, CA (2alpha-hydroxyursolic acid) was also found to decrease the level of intracellular beta-catenin and to suppress the growth of APC-mutated colon cancer cells. Our findings suggest that UA and CA exert their anticancer activities against colon cancer cells by promoting the N-terminal phosphorylation and subsequent proteasomal degradation of beta-catenin.
Corosolic Acid Exhibits Anti-angiogenic and Anti-lymphangiogenic Effects on In Vitro Endothelial Cells and on an In Vivo CT-26 Colon Carcinoma Animal Model.[Pubmed:25644809]
Phytother Res. 2015 May;29(5):714-23.
We describe the anti-angiogenic and anti-lymphangiogenic effects of Corosolic acid, a pentacyclic triterpenoid isolated from Cornus kousa Burg. A mouse colon carcinoma CT-26 animal model was employed to determine the in vivo anti-angiogenic and anti-lymphangiogenic effects of Corosolic acid. Corosolic acid induced apoptosis in CT-26 cells, mediated by the activation of caspase-3. In addition, it reduced the final tumor volume and the blood and lymphatic vessel densities of tumors, indicating that it suppresses in vivo angiogenesis and lymphangiogenesis. Corosolic acid inhibited the proliferation and tube formation of human umbilical vein endothelial cells and human dermal lymphatic microvascular endothelial cells. In addition, Corosolic acid decreased the proliferation and migration of human umbilical vein endothelial cells stimulated by angiopoietin-1. Pretreatment with Corosolic acid decreased the phosphorylation of focal adhesion kinase (FAK) and ERK1/2, suggesting that Corosolic acid contains anti-angiogenic activity that can suppress FAK signaling induced by angiopoietin-1.
Corosolic acid induces apoptotic cell death in HCT116 human colon cancer cells through a caspase-dependent pathway.[Pubmed:24481288]
Int J Mol Med. 2014 Apr;33(4):943-9.
Corosolic acid (CA), a pentacyclic triterpene isolated from Lagerstroemia speciosa L. (also known as Banaba), has been shown to exhibit anticancer properties in various cancer cell lines. However, the anticancer activity of CA on human colorectal cancer cells and the underlying mechanisms remain to be elucidated. In this study, we investigated the effects of CA on cell viability and apoptosis in HCT116 human colon cancer cells. CA dose-dependently inhibited the viability of HCT116 cells. The typical hallmarks of apoptosis, such as chromatin condensation, a sub-G1 peak and phosphatidylserine externalization were detected by Hoechst 33342 staining, flow cytometry and Annexin V staining following treatment with CA. Western blot analysis revealed that CA induced a decrease in the levels of procaspase-8, -9 and -3 and the cleavage of poly(ADP-ribose) polymerase (PARP). The apoptotic cell death induced by CA was accompanied by the activation of caspase-8, -9 and -3, which was completely abrogated by the pan-caspase inhibitor, z-VADFMK. Furthermore, CA upregulated the levels of pro-apoptotic proteins, such as Bax, Fas and FasL and downregulated the levels of anti-apoptotic proteins, such as Bcl-2 and survivin. Taken together, our data provide insight into the molecular mechanisms of CA-induced apoptosis in colorectal cancer (CRC), rendering this compound a potential anticancer agent for the treatment of CRC.
Microbial transformation of the anti-diabetic agent corosolic acid.[Pubmed:25190540]
Nat Prod Res. 2014;28(21):1879-86.
Biotransformation of Corosolic acid (1) by Cochliobolus lunatus and Streptomyces asparaginoviolaceus afforded four metabolites, which were identified by using (1)H NMR, (13)C NMR, DEPT, HSQC, HMBC and NOESY spectral data. Biotransformation of Corosolic acid by C. lunatus R.R. Nelson & Haasis CGMCC 3.4381 produced three metabolites: 2alpha,3beta,21beta-trihydroxyurs-12-en-28-oic acid (2), 2alpha,3beta,7beta,21beta-tetrahydroxy-urs-12-en-28-oic acid (3) and 2alpha,3beta-dihydroxy-21-oxours-12-en-28-oic acid (4). Incubation of Corosolic acid with growing cultures of S. asparaginoviolaceus CGMCC 4.0175 afforded metabolite 2alpha,3beta,30-trihydroxyurs-12-en-28-oic acid (5). All the metabolites were reported for the first time. The substrate and four metabolites, along with four products obtained previously, were evaluated for their inhibitory effects on alpha-glucosidase; all the triterpenes tested showed potent inhibitory effects.
Corosolic Acid Inhibits Hepatocellular Carcinoma Cell Migration by Targeting the VEGFR2/Src/FAK Pathway.[Pubmed:25978354]
PLoS One. 2015 May 15;10(5):e0126725.
Inhibition of VEGFR2 activity has been proposed as an important strategy for the clinical treatment of hepatocellular carcinoma (HCC). In this study, we identified Corosolic acid (CA), which exists in the root of Actinidia chinensis, as having a significant anti-cancer effect on HCC cells. We found that CA inhibits VEGFR2 kinase activity by directly interacting with the ATP binding pocket. CA down-regulates the VEGFR2/Src/FAK/cdc42 axis, subsequently decreasing F-actin formation and migratory activity in vitro. In an in vivo model, CA exhibited an effective dose (5 mg/kg/day) on tumor growth. We further demonstrate that CA has a synergistic effect with sorafenib within a wide range of concentrations. In conclusion, this research elucidates the effects and molecular mechanism for CA on HCC cells and suggests that CA could be a therapeutic or adjuvant strategy for patients with aggressive HCC.