PlanininCAS# 68296-27-5 |
Quality Control & MSDS
Number of papers citing our products
Chemical structure
3D structure
Cas No. | 68296-27-5 | SDF | Download SDF |
PubChem ID | 129290 | Appearance | Powder |
Formula | C21H22O6 | M.Wt | 370.4 |
Type of Compound | N/A | Storage | Desiccate at -20°C |
Solubility | Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc. | ||
Chemical Name | 5-[(3R,3aS,6S,6aS)-6-(3,4-dimethoxyphenyl)-1,3,3a,4,6,6a-hexahydrofuro[3,4-c]furan-3-yl]-1,3-benzodioxole | ||
SMILES | COC1=C(C=C(C=C1)C2C3COC(C3CO2)C4=CC5=C(C=C4)OCO5)OC | ||
Standard InChIKey | AWOGQCSIVCQXBT-LYDRAKHJSA-N | ||
Standard InChI | InChI=1S/C21H22O6/c1-22-16-5-3-12(7-18(16)23-2)20-14-9-25-21(15(14)10-24-20)13-4-6-17-19(8-13)27-11-26-17/h3-8,14-15,20-21H,9-11H2,1-2H3/t14-,15-,20-,21+/m1/s1 | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Planinin Dilution Calculator
Planinin Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 2.6998 mL | 13.4989 mL | 26.9978 mL | 53.9957 mL | 67.4946 mL |
5 mM | 0.54 mL | 2.6998 mL | 5.3996 mL | 10.7991 mL | 13.4989 mL |
10 mM | 0.27 mL | 1.3499 mL | 2.6998 mL | 5.3996 mL | 6.7495 mL |
50 mM | 0.054 mL | 0.27 mL | 0.54 mL | 1.0799 mL | 1.3499 mL |
100 mM | 0.027 mL | 0.135 mL | 0.27 mL | 0.54 mL | 0.6749 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- Zonisamide sodium
Catalog No.:BCC4240
CAS No.:68291-98-5
- Zonisamide
Catalog No.:BCC2512
CAS No.:68291-97-4
- Boc-Arg(Mts)-OH.CHA
Catalog No.:BCC3045
CAS No.:68262-71-5
- (R)-Oxiracetam
Catalog No.:BCC4169
CAS No.:68252-28-8
- 2-Hydroxy-3-(hydroxymethyl)anthraquinone
Catalog No.:BCN1380
CAS No.:68243-30-1
- 6-Prenylnaringenin
Catalog No.:BCN2999
CAS No.:68236-13-5
- 6,8-Diprenylnaringenin
Catalog No.:BCN3000
CAS No.:68236-11-3
- BRL 44408 maleate
Catalog No.:BCC6948
CAS No.:681806-46-2
- Isoliensinine
Catalog No.:BCN6331
CAS No.:6817-41-0
- Nortetraphyllicine
Catalog No.:BCN4240
CAS No.:68160-76-9
- 1-O-Acetyl britannilactone
Catalog No.:BCN2365
CAS No.:681457-46-5
- Jujuboside B1
Catalog No.:BCN3881
CAS No.:68144-21-8
- Amlexanox ethyl ester
Catalog No.:BCC8818
CAS No.:68301-99-5
- Amlexanox
Catalog No.:BCC8817
CAS No.:68302-57-8
- Aristolone
Catalog No.:BCN4039
CAS No.:6831-17-0
- Imbricatolic acid
Catalog No.:BCN4241
CAS No.:6832-60-6
- Nonactin
Catalog No.:BCC7388
CAS No.:6833-84-7
- 1-Methyl-2-nonylquinolin-4(1H)-one
Catalog No.:BCN6585
CAS No.:68353-24-2
- 23,24-dihydroisocucurbitacin B
Catalog No.:BCN7876
CAS No.:68354-21-2
- Deltaline
Catalog No.:BCN5404
CAS No.:6836-11-9
- 7-Methoxy-1-tetralone
Catalog No.:BCN2241
CAS No.:6836-19-7
- 7-Methoxy-1-naphthaleneacetic acid ethyl ester
Catalog No.:BCN1379
CAS No.:6836-21-1
- 7-Methoxy-1-naphthaleneacetic acid
Catalog No.:BCN2243
CAS No.:6836-22-2
- Micheliolide
Catalog No.:BCN8257
CAS No.:68370-47-8
Fargesin inhibits melanin synthesis in murine malignant and immortalized melanocytes by regulating PKA/CREB and P38/MAPK signaling pathways.[Pubmed:30956031]
J Dermatol Sci. 2019 Mar 28. pii: S0923-1811(19)30069-6.
BACKGROUND: Fargesin is commonly used in the treatment of allergic rhinitis, inflammation, sinusitis and headache. OBJECTIVE: The aim of the study is to investigate a new function of fargesin against melanin production and its underlying molecular mechanism. METHODS: B16F10 mouse melanoma cells, Melan-a and human epidermal melanocytes were treated with different concentrations of fargesin for the indicated time. The extracellular and cellular melanin content was detected by spectrometry at 490 nm and 405 nm, respectively. RT-qPCR and Western blot analysis were used to exam the expression of melanogenic enzymes and the activities of PKA/CREB and p38 MAPK pathway components. Zebrafish was used as an in vivo model for studying the function of fargesin in regulating melanogenesis. RESULTS: Fargesin effectively inhibited melanin production at moderate dose in mouse B16F10 melanoma cells, normal melanocyte cell lines and zebrafish. The expression of microphthalmia-associated transcription factor (MITF), its downstream melanogenic enzymes and tyrosinase activity were also strongly reduced by fargesin. Moreover, the increase of melanin production induced by UVB and forskolin could be fully reversed by fargesin treatment. Fargesin also effectively inhibited the activation of PKA/CREB and p38 MAPK as well as their interactions, which in turn is responsible for the expression of MITF and melanogenic enzymes. CONCLUSIONS: These results show that fargesin can function as an anti-melanogenic agent, at least in part, by inhibiting PKA/CREB and p38/MAPK signaling pathways. Therefore, fargesin and its derivatives may potentially be used for preventing hyperpigmentation disorders in the future.
Anti-Inflammatory Effects of Fargesin on Chemically Induced Inflammatory Bowel Disease in Mice.[Pubmed:29880739]
Molecules. 2018 Jun 7;23(6). pii: molecules23061380.
Fargesin is a bioactive lignan from Flos Magnoliae, an herb widely used in the treatment of allergic rhinitis, sinusitis, and headache in Asia. We sought to investigate whether fargesin ameliorates experimental inflammatory bowel disease (IBD) in mice. Oral administration of fargesin significantly attenuated the symptoms of dextran sulfate sodium (DSS)-induced colitis in mice by decreasing the inflammatory infiltration and myeloperoxidase (MPO) activity, reducing tumor necrosis factor (TNF)-alpha secretion, and inhibiting nitric oxide (NO) production in colitis mice. The degradation of inhibitory kappaBalpha (IkappaBalpha), phosphorylation of p65, and mRNA expression of nuclear factor kappaB (NF-kappaB) target genes were inhibited by fargesin treatment in the colon of the colitis mice. In vitro, fargesin blocked the nuclear translocation of p-p65, downregulated the protein levels of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2), and dose-dependently inhibited the activity of NF-kappaB-luciferase in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Taken together, for the first time, the current study demonstrated the anti-inflammatory effects of fargesin on chemically induced IBD might be associated with NF-kappaB signaling suppression. The findings may contribute to the development of therapies for human IBD by using fargesin or its derivatives.
Inhibitory Effects of Dimethyllirioresinol, Epimagnolin A, Eudesmin, Fargesin, and Magnolin on Cytochrome P450 Enzyme Activities in Human Liver Microsomes.[Pubmed:28468305]
Int J Mol Sci. 2017 May 1;18(5). pii: ijms18050952.
Magnolin, epimagnolin A, dimethyllirioresinol, eudesmin, and fargesin are pharmacologically active tetrahydrofurofuranoid lignans found in Flos Magnoliae. The inhibitory potentials of dimethyllirioresinol, epimagnolin A, eudesmin, fargesin, and magnolin on eight major human cytochrome P450 (CYP) enzyme activities in human liver microsomes were evaluated using liquid chromatography-tandem mass spectrometry to determine the inhibition mechanisms and inhibition potency. Fargesin inhibited CYP2C9-catalyzed diclofenac 4'-hydroxylation with a Ki value of 16.3 muM, and it exhibited mechanism-based inhibition of CYP2C19-catalyzed [S]-mephenytoin 4'-hydroxylation (Ki, 3.7 muM; kinact, 0.102 min-1), CYP2C8-catalyzed amodiaquine N-deethylation (Ki, 10.7 muM; kinact, 0.082 min-1), and CYP3A4-catalyzed midazolam 1'-hydroxylation (Ki, 23.0 muM; kinact, 0.050 min-1) in human liver microsomes. Fargesin negligibly inhibited CYP1A2-catalyzed phenacetin O-deethylation, CYP2A6-catalyzed coumarin 7-hydroxylation, CYP2B6-catalyzed bupropion hydroxylation, and CYP2D6-catalyzed bufuralol 1'-hydroxylation at 100 muM in human liver microsomes. Dimethyllirioresinol weakly inhibited CYP2C19 and CYP2C8 with IC50 values of 55.1 and 85.0 muM, respectively, without inhibition of CYP1A2, CYP2A6, CYP2B6, CYP2C9, CYP2D6, and CYP3A4 activities at 100 muM. Epimagnolin A, eudesmin, and magnolin showed no the reversible and time-dependent inhibition of eight major CYP activities at 100 muM in human liver microsomes. These in vitro results suggest that it is necessary to investigate the potentials of in vivo fargesin-drug interaction with CYP2C8, CYP2C9, CYP2C19, and CYP3A4 substrates.
Fargesin exerts anti-inflammatory effects in THP-1 monocytes by suppressing PKC-dependent AP-1 and NF-kB signaling.[Pubmed:28160867]
Phytomedicine. 2017 Jan 15;24:96-103.
BACKGROUND: Fargesin is a lignan from Magnolia fargesii, an oriental medicine used in the treatment of nasal congestion and sinusitis. The anti-inflammatory properties of this compound have not been fully elucidated yet. PURPOSE: This study focused on assessing the anti-inflammatory effects of fargesin on phorbal ester (PMA)-stimulated THP-1 human monocytes, and the molecular mechanisms underlying them. METHODS: Cell viability was evaluated by MTS assay. Protein expression levels of inflammatory mediators were analyzed by Western blotting, ELISA, Immunofluorescence assay. mRNA levels were measured by Real-time PCR. Promoter activities were elucidated by Luciferase assay. RESULTS: It was found that pre-treatment with fargesin attenuated significantly the expression of two major inflammatory mediators, cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS). Fargesin also inhibited the production of pro-inflammation cytokines (IL-1beta, TNF-alpha) and chemokine (CCL-5). Besides, nuclear translocation of transcription factors nuclear factor-kappa B (NF-kB) and activator protein-1 (AP-1), which regulate multiple pro-inflammatory genes, was suppressed by fargesin in a PKC-dependent manner. Furthermore, among the mitogen-activated protein kinases (MAPKs), only c-Jun N-terminal kinase (JNK) was downregulated by fargesin in a PKC-dependent manner, and this reduction was involved in PMA-induced AP-1 and NF-kB nuclear translocation attenuation, demonstrated using a specific JNK inhibitor. CONCLUSION: Taken together, our results found that fargesin exhibits anti-inflammation effects on THP-1 cells via suppression of PKC pathway including downstream JNK, nuclear factors AP-1 and NF-kB. These results suggest that fargesin has anti-inflammatory properties with potential applications in drug development against inflammatory disorders.
Antihypertensive effects of fargesin in vitro and in vivo via attenuating oxidative stress and promoting nitric oxide release.[Pubmed:27409158]
Can J Physiol Pharmacol. 2016 Aug;94(8):900-6.
Fargesin, a bioactive neolignan isolated from magnolia plants, is widely used in the treatment of managing rhinitis, inflammation, histamine, sinusitis, and headache. To provide more biological information about fargesin, we investigated the effects of fargesin on rat aortic rings and 2-kidney, 1-clip (2K1C) hypertensive rats. In vitro, fargesin caused concentration-dependent vasorelaxation in rat isolated aortic rings induced by KCl and norepinephrine. The effect was weakened by endothelium denudation and nitric oxide (NO) synthesis inhibition. In vivo, the evolution of systolic blood pressure (SBP) was followed by weekly measurements. Angiotensin II (Ang II) and endothelin (ET) levels, NO and nitric oxide synthase (NOS), and plasma and liver oxidative stress markers were determined at the end of the experimental period. After 5 weeks of fargesin treatment, we found that fargesin treatment reduced SBP, cardiac hypertrophy, and Ang II and ET levels of hypertensive rats. Increased NOS activity and NO level were observed in fargesin-treated rats. Normalisation of plasma MDA concentrations and improvement of the antioxidant defence system in plasma and liver accompanied the antihypertensive effect of fargesin. Taken together, these results provided substantial evidences that fargesin has antihypertensive effect in 2K1C hypertensive rats via inhibiting oxidative stress and promoting NO release.
Fargesin as a potential beta(1) adrenergic receptor antagonist protects the hearts against ischemia/reperfusion injury in rats via attenuating oxidative stress and apoptosis.[Pubmed:26025856]
Fitoterapia. 2015 Sep;105:16-25.
Fargesin displayed similar chromatographic retention peak to metoprolol in the cardiac muscle/cell membrane chromatography (CM/CMC) and beta1 adrenergic receptor/cell membrane chromatography (beta1AR/CMC) models. To provide more biological information about fargesin, we investigated the effects of fargesin on isoproterenol-(ISO-) induced cells injury in the high expression beta1 adrenergic receptor/Chinese hamster ovary-S (beta1AR/CHO-S) cells and occluding the left coronary artery- (LAD-) induced myocardial ischemia/reperfusion (MI/R) injury in rats. The results in vitro showed that ISO-induced canonical cyclic adenosine monophosphate (cAMP) and protein kinase A (PKA) levels were decreased by fargesin in beta1AR/CHO-S cells. Fargesin attenuated the serum creatine kinase (CK), lactate dehydrogenase (LDH), and improved histopathological changes of ischemic myocardium compared with the I/R rats. Similar results were obtained with Evans Blue/TTC staining, in which fargesin notably reduced infarct size. Moreover, compared with the I/R group, fargesin increased COX release and the activities of some endogenous antioxidative enzymes including superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), but suppressed malondialdehyde (MDA), and intracellular ROS release. Additionally, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay demonstrated fargesin suppressed myocardial apoptosis, which may be related to inhibition of caspase-3 activity. Taken together, these results provided substantial evidences that fargesin as a potential beta1AR antagonist through cAMP/PKA pathway could protect against myocardial ischemia/reperfusion injury in rats. The underlining mechanism may be related to inhibiting oxidative stress and myocardial apoptosis.