Flunarizine 2HClCalcium entry blocker CAS# 30484-77-6 |
- Etifoxine
Catalog No.:BCC1560
CAS No.:21715-46-8
- Etomidate
Catalog No.:BCC1150
CAS No.:33125-97-2
- Etifoxine hydrochloride
Catalog No.:BCC1561
CAS No.:56776-32-0
- Acamprosate calcium
Catalog No.:BCC1327
CAS No.:77337-73-6
Quality Control & MSDS
Number of papers citing our products
Chemical structure
3D structure
Cas No. | 30484-77-6 | SDF | Download SDF |
PubChem ID | 5282407 | Appearance | Powder |
Formula | C26H28Cl2F2N2 | M.Wt | 477.42 |
Type of Compound | N/A | Storage | Desiccate at -20°C |
Solubility | DMSO : 50 mg/mL (104.73 mM; Need ultrasonic) H2O : 1 mg/mL (2.09 mM; Need ultrasonic) | ||
Chemical Name | (E)-1-[Bis(4-fluorophenyl)methyl]-4 | ||
SMILES | [H+].[H+].[Cl-].[Cl-].Fc1ccc(cc1)C(N2CCN(CC2)CC=Cc3ccccc3)c4ccc(F)cc4 | ||
Standard InChIKey | RXKMOPXNWTYEHI-RDRKJGRWSA-N | ||
Standard InChI | InChI=1S/C26H26F2N2.2ClH/c27-24-12-8-22(9-13-24)26(23-10-14-25(28)15-11-23)30-19-17-29(18-20-30)16-4-7-21-5-2-1-3-6-21;;/h1-15,26H,16-20H2;2*1H/b7-4+;; | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Description | Dual Na+/Ca2+ channel blocker; a cerebral and peripheral vasodilator. Neuroprotective. |
Flunarizine 2HCl Dilution Calculator
Flunarizine 2HCl Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 2.0946 mL | 10.473 mL | 20.9459 mL | 41.8918 mL | 52.3648 mL |
5 mM | 0.4189 mL | 2.0946 mL | 4.1892 mL | 8.3784 mL | 10.473 mL |
10 mM | 0.2095 mL | 1.0473 mL | 2.0946 mL | 4.1892 mL | 5.2365 mL |
50 mM | 0.0419 mL | 0.2095 mL | 0.4189 mL | 0.8378 mL | 1.0473 mL |
100 mM | 0.0209 mL | 0.1047 mL | 0.2095 mL | 0.4189 mL | 0.5236 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
Flunarizine is a selective calcium entry blocker.Flunarizine is a drug classified as a calcium channel blocker. Flunarizine is a non-selective calcium entry blocker with other actions including histamine H1 receptor blocking activity. It is effective in t
- S 24795
Catalog No.:BCC7700
CAS No.:304679-75-2
- Xerophilusin G
Catalog No.:BCN5219
CAS No.:304642-94-2
- Theaflavin 3,3'-di-O-gallate
Catalog No.:BCN5920
CAS No.:30462-35-2
- Theaflavin-3-gallate
Catalog No.:BCN2316
CAS No.:30462-34-1
- Cyclomusalenone
Catalog No.:BCN4654
CAS No.:30452-60-9
- AVE 0991
Catalog No.:BCC4032
CAS No.:304462-19-9
- Dynasore
Catalog No.:BCC1088
CAS No.:304448-55-3
- Toxicarolisoflavone
Catalog No.:BCN6468
CAS No.:3044-60-8
- Pelirine
Catalog No.:BCN4077
CAS No.:30435-26-8
- Corydalmine
Catalog No.:BCN5217
CAS No.:30413-84-4
- LU AA33810
Catalog No.:BCC7708
CAS No.:304008-29-5
- Harmaline
Catalog No.:BCN5218
CAS No.:304-21-2
- Mearnsitrin
Catalog No.:BCN5220
CAS No.:30484-88-9
- Tanaproget
Catalog No.:BCC1984
CAS No.:304853-42-7
- Alisol C
Catalog No.:BCN3458
CAS No.:30489-27-1
- AGK 2
Catalog No.:BCC7609
CAS No.:304896-28-4
- SANT-1
Catalog No.:BCC3941
CAS No.:304909-07-7
- 6,7-Dihydroxycoumarin
Catalog No.:BCN5905
CAS No.:305-01-1
- Chlorambucil
Catalog No.:BCC5351
CAS No.:305-03-3
- L-carnosine
Catalog No.:BCN3803
CAS No.:305-84-0
- Licoricidin
Catalog No.:BCN6679
CAS No.:30508-27-1
- Zidovudine
Catalog No.:BCC5024
CAS No.:30516-87-1
- SL-327
Catalog No.:BCC1123
CAS No.:305350-87-2
- Caulilexin C
Catalog No.:BCN3960
CAS No.:30536-48-2
The ability of diphenylpiperazines to prevent neuronal death in dorsal root ganglion neurons in vitro after nerve growth factor deprivation and in vivo after axotomy.[Pubmed:8189223]
J Neurochem. 1994 Jun;62(6):2148-57.
The mechanism of neuroprotection by the calcium channel antagonist flunarizine against neuronal death is unknown. We investigated the ability of other calcium channel antagonists (cinnarizine, nimodipine, nicardipine, diltiazem, and verapamil), calmodulin antagonists, and calpain inhibitors to prevent neuronal death in rat dorsal root ganglion neurons in vitro after nerve growth factor (NGF) deprivation and the ability of cinnarizine and diltiazem to protect in vivo after axotomy. In vitro, only neurons treated with cinnarizine or flunarizine were protected from death after withdrawal. In vivo, cinnarizine, but not diltiazem, protected dorsal root ganglion neurons in rats after unilateral sciatic nerve crush. Intracellular calcium concentration ([Ca2+]i) was evaluated with fura 2 after NGF deprivation in vitro. Neurons "committed to die" 24 h after NGF deprivation displayed a decline in [Ca2+]i before visible morphological deterioration consistent with cell death. The influx of extracellular calcium was not necessary to produce neuronal death. Neurons deprived of NGF gradually lost the ability to respond to elevated external potassium with an increase in [Ca2+]i during the first 24 h after trophic factor deprivation. After 24 h, neurons deprived of NGF could not be rescued by readministration of NGF. Neurons protected from cell death with diphenylpiperazines maintained their response to high external potassium, suggesting continued membrane integrity. We speculate that diphenylpiperazines may protect sensory neurons via an unknown mechanism that stabilizes cell membranes.
Ca++ and Na+ channels involved in neuronal cell death. Protection by flunarizine.[Pubmed:1850815]
Life Sci. 1991;48(20):1881-93.
Flunarizine, a class IV Ca++ antagonist non-selective for slow Ca++ channels, has been shown to be beneficial in the prophylactic treatment of migraine, the treatment of vertigo, and as add-on treatment in therapy-resistant forms of epilepsy. Flunarizine protects the brain against functional and/or structural neuronal damage in various animal models of cerebral ischemia. In addition to its cerebrovascular effect, flunarizine has also direct neuroprotective actions. New data have emerged on flunarizine with regard to Ca++ and Na+ channels in neuronal cells. There are several possible mechanisms involved in the mode of action of flunarizine. Flunarizine may block Ca++ and Na+ channels, both of which may flux Ca++ as well as Na+. A decrease in Ca++ influx may prevent further release of glutamate, and activation of NMDA receptor gated Ca++ channels at physiological pH. A decrease in Na+ influx may prevent cytotoxicity secondary to a large gain in intracellular Ca++, by reverse operation of the Na+/Ca++ exchanger. This mechanism may be important when the glycolytic rate is increased with concomitant acidosis, and phospholipids are broken down as occurs typically during ischemia. Given the complexity of biochemical events leading to cell death, blocking exclusively one channel subtype is not likely to yield sufficient protection. Hence, it may be useful to develop anti-ischemic compounds which act on a series of pathways involved in Ca++ overload, rather than selectively block one such channel.