Ginsenoside Ra1CAS# 83459-41-0 |
Quality Control & MSDS
Number of papers citing our products
Chemical structure
3D structure
Cas No. | 83459-41-0 | SDF | Download SDF |
PubChem ID | 100941542 | Appearance | White crystalline powder |
Formula | C58H98O26 | M.Wt | 1211.38 |
Type of Compound | Triterpenoids | Storage | Desiccate at -20°C |
Solubility | Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc. | ||
Chemical Name | (2S,3R,4S,5S,6R)-2-[(2R,3R,4S,5S,6R)-2-[[(3S,5R,8R,9R,10R,12R,13R,14R,17S)-17-[(2S)-2-[(2S,3R,4S,5S,6R)-6-[[(2S,3R,4R,5S)-3,4-dihydroxy-5-[(2S,3R,4S,5R)-3,4,5-trihydroxyoxan-2-yl]oxyoxan-2-yl]oxymethyl]-3,4,5-trihydroxyoxan-2-yl]oxy-6-methylhept-5-en-2-yl]-12-hydroxy-4,4,8,10,14-pentamethyl-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl]oxy]-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol | ||
SMILES | CC(=CCCC(C)(C1CCC2(C1C(CC3C2(CCC4C3(CCC(C4(C)C)OC5C(C(C(C(O5)CO)O)O)OC6C(C(C(C(O6)CO)O)O)O)C)C)O)C)OC7C(C(C(C(O7)COC8C(C(C(CO8)OC9C(C(C(CO9)O)O)O)O)O)O)O)O)C | ||
Standard InChIKey | KVMXBSSOCCPAOR-WWJNHZDPSA-N | ||
Standard InChI | InChI=1S/C58H98O26/c1-24(2)10-9-14-58(8,84-52-47(74)42(69)39(66)30(81-52)22-76-49-45(72)40(67)31(23-77-49)80-50-44(71)36(63)27(62)21-75-50)25-11-16-57(7)35(25)26(61)18-33-55(5)15-13-34(54(3,4)32(55)12-17-56(33,57)6)82-53-48(43(70)38(65)29(20-60)79-53)83-51-46(73)41(68)37(64)28(19-59)78-51/h10,25-53,59-74H,9,11-23H2,1-8H3/t25-,26+,27+,28+,29+,30+,31-,32-,33+,34-,35-,36-,37+,38+,39+,40-,41-,42-,43-,44+,45+,46+,47+,48+,49+,50-,51-,52-,53-,55-,56+,57+,58-/m0/s1 | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Description | 1. Ginsenoside Ra1 shows significant inhibitory effects on protein tyrosine kinase (PTK) activation induced by hypoxia/reoxygenation (H/R). |
Ginsenoside Ra1 Dilution Calculator
Ginsenoside Ra1 Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 0.8255 mL | 4.1275 mL | 8.255 mL | 16.5101 mL | 20.6376 mL |
5 mM | 0.1651 mL | 0.8255 mL | 1.651 mL | 3.302 mL | 4.1275 mL |
10 mM | 0.0826 mL | 0.4128 mL | 0.8255 mL | 1.651 mL | 2.0638 mL |
50 mM | 0.0165 mL | 0.0826 mL | 0.1651 mL | 0.3302 mL | 0.4128 mL |
100 mM | 0.0083 mL | 0.0413 mL | 0.0826 mL | 0.1651 mL | 0.2064 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- Ebracteolata cpd B
Catalog No.:BCN3781
CAS No.:83459-37-4
- Boc-D-Prolinol
Catalog No.:BCC2707
CAS No.:83435-58-9
- ICI 154,129
Catalog No.:BCC5677
CAS No.:83420-94-4
- Phenformin HCl
Catalog No.:BCC4362
CAS No.:834-28-6
- PL 017
Catalog No.:BCC5864
CAS No.:83397-56-2
- Prenyl caffeate
Catalog No.:BCC8351
CAS No.:100884-13-7
- D609
Catalog No.:BCC1509
CAS No.:83373-60-8
- 25(R)-Hydroxyprotopanaxadiol
Catalog No.:BCN2493
CAS No.:83349-37-5
- 10-O-Caffeoyl-6-epiferetoside
Catalog No.:BCN4822
CAS No.:83348-22-5
- Dynorphin B
Catalog No.:BCC5987
CAS No.:83335-41-5
- (-)-Lariciresinol
Catalog No.:BCN3418
CAS No.:83327-19-9
- 8(17),13-Labdadien-15,16-olide
Catalog No.:BCN4374
CAS No.:83324-51-0
- Mifamurtide
Catalog No.:BCC5241
CAS No.:83461-56-7
- Voglibose
Catalog No.:BCC4750
CAS No.:83480-29-9
- Ginsenoside Rd2
Catalog No.:BCN8279
CAS No.:83480-64-2
- Grantaline
Catalog No.:BCN2083
CAS No.:83482-61-5
- 4-[4-(3-Hydroxyphenyl)-3-(4-methylphenyl)-6-oxo-1,4-dihydropyrrolo[3,4-d]pyrazol-5-yl]benzoic acid
Catalog No.:BCC6341
CAS No.:834903-43-4
- Leucosceptoside A
Catalog No.:BCN7457
CAS No.:83529-62-8
- Anisofolin A
Catalog No.:BCN4377
CAS No.:83529-71-9
- 2,2-Bis(3-amino-4-hydroxyphenyl)hexafluoropropane
Catalog No.:BCC8490
CAS No.:83558-87-6
- Regorafenib hydrochloride
Catalog No.:BCC1883
CAS No.:835621-07-3
- Cropodine
Catalog No.:BCN2073
CAS No.:83601-85-8
- Cyclosporin H
Catalog No.:BCC6448
CAS No.:83602-39-5
- (S)-AMPA
Catalog No.:BCC6583
CAS No.:83643-88-3
[Chemical constituents from roots and rhizomes of Panax ginseng cultivated in Jilin province].[Pubmed:24380303]
Zhongguo Zhong Yao Za Zhi. 2013 Sep;38(17):2807-17.
The chemical constituents of the roots and rhizomes of Panax ginseng were systematically investigated by various column chromatographic methods including Amberlite XAD-4 macroporous adsorptive resins and silica gel as well as high-performance liquid chromatography, and their chemical structures were identified by physico-chemical properties and spectral analyses. Twenty-eight compounds were isolated from the 70% ethanolic-aqueous extract and identified as koryoginsenoside R1 (1), ginsenoside Rg1 (2), ginsenoside Rf (3), notoginsenoside R2 (4), ginsenoside Rg2 (5), notoginsenoside Fe (6), ginsenjilinol (7), ginsenoside Re5 (8), noto-ginsenoside N (9), notoginsenoside R1 (10), ginsenoside Re2 (11), ginsenoside Re1 (12), ginsenoside Re (13), ginsenoside Rs2 (14), ginsenoside Ro methyl ester (15), ginsenoside Rd (16), ginsenoside Re3 (17), ginsenoside Re4 (18), 20-gluco-ginsenoside Rf (19), ginsenoside Ro (20), ginsenoside Rc (21), quinquenoside-R1 (22), ginsenoside Ra2 (23), ginsenoside Rb1 (24), Ginsenoside Ra1 (25), ginsenoside Ra3 (26), ginsenoside Rb2 (27), and notoginsenoside R4 (28). All isolated compounds are 20 (S) -protopanaxadiol or protopanaxatriol type triterpenoid saponins. Compound 1 was isolated from the roots and rhizomes of P. ginseng cultivated in Jilin province for the first time and compound 6 was isolated from the roots and rhizomes of P. ginseng for the first time. The 1H-NMR data of compounds 6, 14 and 19 were assigned for the first time.
Purification and characterization of ginsenoside Ra-hydrolyzing beta-D-xylosidase from Bifidobacterium breve K-110, a human intestinal anaerobic bacterium.[Pubmed:12913270]
Biol Pharm Bull. 2003 Aug;26(8):1170-3.
Beta-D-Xylosidase (EC 3.2.1.37) has been purified from ginsenoside Ra-metabolizing Bifidobacterium breve K-110, which was isolated from human intestinal microflora. beta-D-Xylosidase was purified to apparent homogeneity by a combination of ammonium sulfate precipitation, QAE-cellulose, butyl-toyopearl, hydroxyapatit and Q-Sepharose column chromatographies with the final specific activity of 51.8 micromol/min/mg. Molecular weight of beta-D-xylosidase is 49 kDa by SDS-PAGE and gel filtration, which consisted of a single subunit. beta-D-Xylosidase showed optimal activity at pH 5.0 and 37 degrees C. The purified enzyme was potently inhibited by PCMS. beta-D-Xylosidase acted to the greatest extent on p-nitrophenyl-beta-D-xylopyranoside, followed by Ginsenoside Ra1 and ginsenoside Ra2. This enzyme hydrolyzed xylan to xylose, but did not act on p-nitrophenyl-beta-glucopyranoside, p-nitrophenyl-beta-galactopyranoside or p-nitrophenyl-beta-D-fucopyranoside. These findings suggest that this is the first reported purification of ginsenoside-hydrolyzing beta-D-xylosidase from an anaerobic Bifidobacterium sp.
Cloning and characterization of ginsenoside Ra1-hydrolyzing beta-D-xylosidase from Bifidobacterium breve K-110.[Pubmed:22534302]
J Microbiol Biotechnol. 2012 Apr;22(4):535-40.
beta-D-Xylosidase (E.C. 3.2.1.37) from Bifidobacterium breve K-110, which hydrolyzes Ginsenoside Ra1 to ginsenoside Rb2, was cloned and expressed in Escherichia coli. The (His6)-tagged recombinant enzyme, designated as XlyBK- 110, was efficiently purified using Ni(2)(+)-affinity chromatography (109.9-fold, 84% yield). The molecular mass of XylBK- 100 was found to be 55.7 kDa by SDS-PAGE. Its sequence revealed a 1,347 bp open reading frame (ORF) encoding a protein containing 448 amino acids, which showed 82% identity (DNA) to the previously reported glycosyl hydrolase family 30 of Bifidobacterium adolescentis ATCC 15703. The Km and Vmax values toward p-nitrophenyl-beta-D-xylopyranoside (pNPX) were 1.45mM and 10.75 micromol/min/mg, respectively. This enzyme had pH and temperature optima at 6.0 and 45 degrees C, respectively. XylBK-110 acted to the greatest extent on xyloglucosyl kakkalide, followed by pNPX and Ginsenoside Ra1, but did not act on p-nitrophenyl-alpha-Larabinofuranoside, p-nitrophenyl-beta-D-glucopyranoside, or p-nitrophenyl-beta-D-fucopyranoside. In conclusion, this is the first report on the cloning and expression of beta-Dxylosidase- hydrolyzing Ginsenoside Ra1 and kakkalide from human intestinal microflora.