Home >> Research Area >>GPCR/G protein>>GPR55>> 4-[4-(3-Hydroxyphenyl)-3-(4-methylphenyl)-6-oxo-1,4-dihydropyrrolo[3,4-d]pyrazol-5-yl]benzoic acid

4-[4-(3-Hydroxyphenyl)-3-(4-methylphenyl)-6-oxo-1,4-dihydropyrrolo[3,4-d]pyrazol-5-yl]benzoic acid

Selective GPR55 antagonist CAS# 834903-43-4

4-[4-(3-Hydroxyphenyl)-3-(4-methylphenyl)-6-oxo-1,4-dihydropyrrolo[3,4-d]pyrazol-5-yl]benzoic acid

2D Structure

Catalog No. BCC6341----Order now to get a substantial discount!

Product Name & Size Price Stock
4-[4-(3-Hydroxyphenyl)-3-(4-methylphenyl)-6-oxo-1,4-dihydropyrrolo[3,4-d]pyrazol-5-yl]benzoic acid: 5mg $81 In Stock
4-[4-(3-Hydroxyphenyl)-3-(4-methylphenyl)-6-oxo-1,4-dihydropyrrolo[3,4-d]pyrazol-5-yl]benzoic acid: 10mg Please Inquire In Stock
4-[4-(3-Hydroxyphenyl)-3-(4-methylphenyl)-6-oxo-1,4-dihydropyrrolo[3,4-d]pyrazol-5-yl]benzoic acid: 20mg Please Inquire Please Inquire
4-[4-(3-Hydroxyphenyl)-3-(4-methylphenyl)-6-oxo-1,4-dihydropyrrolo[3,4-d]pyrazol-5-yl]benzoic acid: 50mg Please Inquire Please Inquire
4-[4-(3-Hydroxyphenyl)-3-(4-methylphenyl)-6-oxo-1,4-dihydropyrrolo[3,4-d]pyrazol-5-yl]benzoic acid: 100mg Please Inquire Please Inquire
4-[4-(3-Hydroxyphenyl)-3-(4-methylphenyl)-6-oxo-1,4-dihydropyrrolo[3,4-d]pyrazol-5-yl]benzoic acid: 200mg Please Inquire Please Inquire
4-[4-(3-Hydroxyphenyl)-3-(4-methylphenyl)-6-oxo-1,4-dihydropyrrolo[3,4-d]pyrazol-5-yl]benzoic acid: 500mg Please Inquire Please Inquire
4-[4-(3-Hydroxyphenyl)-3-(4-methylphenyl)-6-oxo-1,4-dihydropyrrolo[3,4-d]pyrazol-5-yl]benzoic acid: 1000mg Please Inquire Please Inquire
Related Products

Quality Control of 4-[4-(3-Hydroxyphenyl)-3-(4-methylphenyl)-6-oxo-1,4-dihydropyrrolo[3,4-d]pyrazol-5-yl]benzoic acid

3D structure

Package In Stock

4-[4-(3-Hydroxyphenyl)-3-(4-methylphenyl)-6-oxo-1,4-dihydropyrrolo[3,4-d]pyrazol-5-yl]benzoic acid

Number of papers citing our products

Chemical Properties of 4-[4-(3-Hydroxyphenyl)-3-(4-methylphenyl)-6-oxo-1,4-dihydropyrrolo[3,4-d]pyrazol-5-yl]benzoic acid

Cas No. 834903-43-4 SDF Download SDF
PubChem ID 16020046 Appearance Powder
Formula C25H19N3O4 M.Wt 425.44
Type of Compound N/A Storage Desiccate at -20°C
Solubility DMSO : 100 mg/mL (235.05 mM; Need ultrasonic)
Chemical Name 4-[4-(3-hydroxyphenyl)-3-(4-methylphenyl)-6-oxo-1,4-dihydropyrrolo[3,4-c]pyrazol-5-yl]benzoic acid
SMILES CC1=CC=C(C=C1)C2=NNC3=C2C(N(C3=O)C4=CC=C(C=C4)C(=O)O)C5=CC(=CC=C5)O
Standard InChIKey VGUQVYZXABOXCX-UHFFFAOYSA-N
Standard InChI InChI=1S/C25H19N3O4/c1-14-5-7-15(8-6-14)21-20-22(27-26-21)24(30)28(18-11-9-16(10-12-18)25(31)32)23(20)17-3-2-4-19(29)13-17/h2-13,23,29H,1H3,(H,26,27)(H,31,32)
General tips For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months.
We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months.
Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it.
About Packaging 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial.
2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial.
3. Try to avoid loss or contamination during the experiment.
Shipping Condition Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request.

Biological Activity of 4-[4-(3-Hydroxyphenyl)-3-(4-methylphenyl)-6-oxo-1,4-dihydropyrrolo[3,4-d]pyrazol-5-yl]benzoic acid

DescriptionSelective GPR55 antagonist. Inhibits LPI-induced Ca2+ signaling (IC50 = 0.21 μM in HEK-GPR55 cells), ERK1/2 phosphorylation and GPR55-mediated transcription factor activation. Displays weak inhibition of acetylcholinesterase, μ-opioid receptor, KCNH2 and hERG. Decreases LPI-induced GPR55 internalization. Reduces experimental intestinal inflammation in mice.

4-[4-(3-Hydroxyphenyl)-3-(4-methylphenyl)-6-oxo-1,4-dihydropyrrolo[3,4-d]pyrazol-5-yl]benzoic acid Dilution Calculator

Concentration (start)
x
Volume (start)
=
Concentration (final)
x
Volume (final)
 
 
 
C1
V1
C2
V2

calculate

4-[4-(3-Hydroxyphenyl)-3-(4-methylphenyl)-6-oxo-1,4-dihydropyrrolo[3,4-d]pyrazol-5-yl]benzoic acid Molarity Calculator

Mass
=
Concentration
x
Volume
x
MW*
 
 
 
g/mol

calculate

Preparing Stock Solutions of 4-[4-(3-Hydroxyphenyl)-3-(4-methylphenyl)-6-oxo-1,4-dihydropyrrolo[3,4-d]pyrazol-5-yl]benzoic acid

1 mg 5 mg 10 mg 20 mg 25 mg
1 mM 2.3505 mL 11.7525 mL 23.5051 mL 47.0102 mL 58.7627 mL
5 mM 0.4701 mL 2.3505 mL 4.701 mL 9.402 mL 11.7525 mL
10 mM 0.2351 mL 1.1753 mL 2.3505 mL 4.701 mL 5.8763 mL
50 mM 0.047 mL 0.2351 mL 0.4701 mL 0.9402 mL 1.1753 mL
100 mM 0.0235 mL 0.1175 mL 0.2351 mL 0.4701 mL 0.5876 mL
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations.

Organizitions Citing Our Products recently

 
 
 

Calcutta University

University of Minnesota

University of Maryland School of Medicine

University of Illinois at Chicago

The Ohio State University

University of Zurich

Harvard University

Colorado State University

Auburn University

Yale University

Worcester Polytechnic Institute

Washington State University

Stanford University

University of Leipzig

Universidade da Beira Interior

The Institute of Cancer Research

Heidelberg University

University of Amsterdam

University of Auckland
TsingHua University
TsingHua University
The University of Michigan
The University of Michigan
Miami University
Miami University
DRURY University
DRURY University
Jilin University
Jilin University
Fudan University
Fudan University
Wuhan University
Wuhan University
Sun Yat-sen University
Sun Yat-sen University
Universite de Paris
Universite de Paris
Deemed University
Deemed University
Auckland University
Auckland University
The University of Tokyo
The University of Tokyo
Korea University
Korea University

Background on 4-[4-(3-Hydroxyphenyl)-3-(4-methylphenyl)-6-oxo-1,4-dihydropyrrolo[3,4-d]pyrazol-5-yl]benzoic acid

CID 16020046 is a potent and selective GPR55(LPI receptor) antagonist; inhibitsGPR55 constitutive activity with IC50 of 0.15 uM. IC50 value: 0.15 uM [1] Target: GPR55 antagonist In yeast cells expressing human GPR55, CID16020046 antagonized agonist-induced receptor activation. In human embryonic kidney(HEK293) cells stably expressing human GPR55, the compound behaved as an antagonist on LPI-mediated Ca2+ release and extracellular signal-regulated kinases activation, but not in HEK293 cells expressing cannabinoid receptor 1 or 2.CID16020046 concentration dependently inhibited LPI-induced activation of nuclear factor of activated T-cells (NFAT), nuclear factor k of activated B cells (NF-kB) and serum response element, translocation of NFAT and NF-kB, and GPR55 internalization. It reduced LPI-induced wound healing in primary human lung microvascular endothelial cells and reversed LPI-inhibited platelet aggregation.

References:
[1]. Kargl J, et al. A selective antagonist reveals a potential role of G protein-coupled receptor 55 in platelet and endothelial cell function. J Pharmacol Exp Ther. 2013 Jul;346(1):54-66.

Featured Products
New Products
 

References on 4-[4-(3-Hydroxyphenyl)-3-(4-methylphenyl)-6-oxo-1,4-dihydropyrrolo[3,4-d]pyrazol-5-yl]benzoic acid

Profiling of hydroxycinnamoylquinic acids in plant extracts using in-source CID fragmentation.[Pubmed:27591562]

J Mass Spectrom. 2016 Dec;51(12):1130-1145.

Hydroxycinnamoylquinic acids (HCQAs) are a major class of phenolic plant secondary metabolites, belonging to the chlorogenic acid family. Various health-beneficial properties of HCQAs have been shown, which has drawn interest for HCQA profiling in plants of human consumption. However, this task remains challenging, because several isomeric HCQAs can be present in the sample with identical molecular formulae and the limited availability of reference standards poses additional challenges to their identification. In the present work, a high performance liquid chromatography-electrospray ionization-quadrupole time-of-flight-mass spectrometry (HPLC-ESI-Q/TOF-MS) method accompanied with an effective data filtering protocol is presented, which is shown to be suitable for the identification of HCQAs in plant materials in a non-targeted manner. Both collision-induced dissociation (CID) fragmentation performed in a collision cell and in-source (CID) fragmentation were used to produce accurate mass fragments. It was shown that fragmentation characteristics required for identification of regio-isomers of HCQAs can be achieved with in-source CID fragmentation, enabling the use of a single-stage MS system with in-source fragmentation for convincing identification of HCQAs. Based on a thorough validation of identified HCQA compounds using coffee bean extracts as reference samples, comprehensive profiling of HCQAs in two apricot (Prunus armeniaca L.) genotypes ('Preventa' and 'Gonci magyarkajszi') was carried out for the first time and the following 10 HCQAs were shown to be present in apricot fruit: 3-caffeoylquinic acid (CQA), cis-3-CQA, 4-CQA, 5-CQA, cis-5-CQA, 3,5-diCQA, 3-p-coumaroylquinic acid (pCoQA), 4-pCoQA, 3-feruloylquinic acid (FQA) and cis-3-FQA. Copyright (c) 2016 John Wiley & Sons, Ltd. HIGHLIGHTS: An HPLC-ESI-Q/TOF-MS method suitable for the identification of hydroxycinnamoyilquinic acids (HCQAs) in plant material in a non-targeted manner was developed. Single-stage, high-resolution MS system with in-source fragmentation was shown to be suitable for convincing identification of HCQAs. Comprehensive profiling of HCQAs in two apricot (Prunus armeniaca L.) genotypes was carried out for the first time. Copyright (c) 2016 John Wiley & Sons, Ltd.

Analysis of matrix-assisted laser desorption/ionization quadrupole time-of-flight collision-induced dissociation spectra of simple precursor ions and isobaric oligosaccharide ion mixtures based on product ion intensities and pattern recognition.[Pubmed:28299859]

Rapid Commun Mass Spectrom. 2017 May 30;31(10):873-885.

RATIONALE: Qualitative analysis of glycomic tandem mass spectrometry (MS/MS) data based on m/z values of product ions alone is widely used, and often sufficient for analysis of single analytes. However, most complex glycomic mixtures contain multiple isobaric oligosaccharides, in which case this approach is often limited. Here we show how ion intensity information can be used in order to enhance MS/MS data analysis, and extract both qualitative and semiquantitative information from complex glycomic MS/MS datasets. METHODS: A matrix-assisted laser desorption/ionization quadrupole time-of-flight (MALDI QTOF) mass spectrometer was used in this study. We compared the intensities of product ions within a single product ion series, determined by their length, across the whole glycomic MS/MS dataset. In order to detect discernable patterns, the intensity data was normalized to the intensity of each product ion within the series. In most cases, normalized data yielded easily discernable patterns, relevant either for analysis of specific glycomic structure types, or mechanistic MS studies. RESULTS: We used our approach on a glycomic sample consisting of human milk oligosaccharides. The approach yielded useful results for both qualitative and semiquantitative analyses. All normalizations performed were not equally rich in information and the information content of generated tables was not possible to predict. These analyses were shown to be independent of instrument manufacturer. CONCLUSIONS: Our approach enabled more detailed qualitative analysis of MS/MS spectra of precursor ions containing isobaric oligosaccharide structures. While limited semiquantitative information could be extracted from the raw data as well, the accuracy of this method should be significantly enhanced when standard calibration mixtures can be prepared. Copyright (c) 2017 John Wiley & Sons, Ltd.

Gas-Phase Fragmentation Behavior of Oxidized Prenyl Peptides by CID and ETD Tandem Mass Spectrometry.[Pubmed:27785692]

J Am Soc Mass Spectrom. 2017 Apr;28(4):704-707.

Farnesylation and geranylgeranylation are the two types of prenyl modification of proteins. Prenylated peptides are highly hydrophobic and their abundances in biological samples are low. In this report, we studied the oxidized prenylated peptides by electrospray ionization mass spectrometry and identified them by collision-induced dissociation (CID) and electron-transfer dissociation (ETD) tandem mass spectrometry. Modified prenyl peptides were generated utilizing strong and low strength oxidizing agents to selectively oxidize and epoxidize cysteine sulfur and prenyl side chain. We selected three peptides with prenyl motifs and synthesized their prenylated versions. The detailed characteristic fragmentations of oxidized and epoxidized farnesylated and geranylgeranylated peptides were studied side by side with two popular fragmentation techniques. CID and ETD mass spectrometry clearly distinguished the modified version of these peptides. ETD mass spectrometry provided sequence information of the highly labile modified prenyl peptides and showed different characteristic fragmentations compared with CID. A detailed fragmentation of modified geranylgeranylated peptides was compared by CID and ETD mass spectrometry for the first time. Graphical Abstract .

Modeling collision energy transfer in APCI/CID mass spectra of PAHs using thermal-like post-collision internal energy distributions.[Pubmed:27802636]

J Chem Phys. 2016 Oct 28;145(16):164311.

The internal energy transferred when projectile molecular ions of naphthalene collide with argon gas atoms was extracted from the APCI-CID (atmospheric-pressure chemical ionization collision-induced dissociation) mass spectra acquired as a function of collision energy. Ion abundances were calculated by microcanonical integration of the differential rate equations using the Rice-Ramsperger-Kassel-Marcus rate constants derived from a UB3LYP/6-311G+(3df,2p)//UB3LYP/6-31G(d) fragmentation mechanism and thermal-like vibrational energy distributions pME,Tchar. The mean vibrational energy excess of the ions was characterized by the parameter Tchar ("characteristic temperature"), determined by fitting the theoretical ion abundances to the experimental breakdown graph (a plot of relative abundances of the ions as a function of kinetic energy) of activated naphthalene ions. According to these results, the APCI ion source produces species below Tchar = 1457 K, corresponding to 3.26 eV above the vibrational ground state. Subsequent collisions heat the ions up further, giving rise to a sigmoid curve of Tchar as a function of Ecom (center-of-mass-frame kinetic energy). The differential internal energy absorption per kinetic energy unit (dEvib/dEcom) changes with Ecom according to a symmetric bell-shaped function with a maximum at 6.38 +/- 0.32 eV (corresponding to 6.51 +/- 0.27 eV of vibrational energy excess), and a half-height full width of 6.30 +/- 1.15 eV. This function imposes restrictions on the amount of energy that can be transferred by collisions, such that a maximum is reached as kinetic energy is increased. This behavior suggests that the collisional energy transfer exhibits a pronounced increase around some specific value of energy. Finally, the model is tested against the CID mass spectra of anthracene and pyrene ions and the corresponding results are discussed.

The GPR55 antagonist CID16020046 protects against intestinal inflammation.[Pubmed:26227635]

Neurogastroenterol Motil. 2015 Oct;27(10):1432-45.

BACKGROUND: G protein-coupled receptor 55 (GPR55) is a lysophospholipid receptor responsive to certain cannabinoids. The role of GPR55 in inflammatory processes of the gut is largely unknown. Using the recently characterized GPR55 inhibitor CID16020046, we determined the role of GPR55 in experimental intestinal inflammation and explored possible mechanisms of action. METHODS: Colitis was induced by either 2.5% dextran sulfate sodium (DSS) supplemented in the drinking water of C57BL/6 mice or by a single intrarectal application of trinitrobenzene sulfonic acid (TNBS). KEY RESULTS: Daily application of CID16020046 (20 mg/kg) significantly reduced inflammation scores and myeloperoxidase (MPO) activity. In the DSS colitis model, levels of tumor necrosis factor alpha (TNF-alpha) and interleukin 1 beta (IL-1beta), and the expression of cyclooxygenase (Cox)-2 and signal transducer and activator of transcription 3 (STAT-3) were reduced in colon tissues while in TNBS-induced colitis, levels of Cox-2, IL-1beta and IL-6 were significantly lowered. Evaluation of leukocyte recruitment by flow cytometry indicated reduced presence of lymphocytes and macrophages in the colon following GPR55 inhibition in DSS-induced colitis. In J774A.1 mouse macrophages, inhibition of GPR55 revealed reduced migration of macrophages and decreased CD11b expression, suggesting that direct effects of CID16020046 on macrophages may have contributed to the improvement of colitis. GPR55(-/-) knockout mice showed reduced inflammation scores as compared to wild type mice in the DSS model suggesting a pro-inflammatory role in intestinal inflammation. CONCLUSIONS & INFERENCES: Pharmacological blockade of GPR55 reduces experimental intestinal inflammation by reducing leukocyte migration and activation, in particular that of macrophages. Therefore, CID16020046 represents a possible drug for the treatment of bowel inflammation.

A selective antagonist reveals a potential role of G protein-coupled receptor 55 in platelet and endothelial cell function.[Pubmed:23639801]

J Pharmacol Exp Ther. 2013 Jul;346(1):54-66.

The G protein-coupled receptor 55 (GPR55) is a lysophosphatidylinositol (LPI) receptor that is also responsive to certain cannabinoids. Although GPR55 has been implicated in several (patho)physiologic functions, its role remains enigmatic owing mainly to the lack of selective GPR55 antagonists. Here we show that the compound CID16020046 ((4-[4-(3-hydroxyphenyl)-3-(4-methylphenyl)-6-oxo-1H,4H,5H,6H-pyrrolo[3,4-c]pyraz ol-5-yl] benzoic acid) is a selective GPR55 antagonist. In yeast cells expressing human GPR55, CID16020046 antagonized agonist-induced receptor activation. In human embryonic kidney (HEK293) cells stably expressing human GPR55, the compound behaved as an antagonist on LPI-mediated Ca(2)(+) release and extracellular signal-regulated kinases activation, but not in HEK293 cells expressing cannabinoid receptor 1 or 2 (CB(1) or CB(2)). CID16020046 concentration dependently inhibited LPI-induced activation of nuclear factor of activated T-cells (NFAT), nuclear factor kappa of activated B cells (NF-kappaB) and serum response element, translocation of NFAT and NF-kappaB, and GPR55 internalization. It reduced LPI-induced wound healing in primary human lung microvascular endothelial cells and reversed LPI-inhibited platelet aggregation, suggesting a novel role for GPR55 in platelet and endothelial cell function. CID16020046 is therefore a valuable tool to study GPR55-mediated mechanisms in primary cells and tissues.

Description

CID 16020046 is a potent and selective GPR55(LPI receptor) antagonist; inhibitsGPR55 constitutive activity with IC50 of 0.15 uM.

Keywords:

4-[4-(3-Hydroxyphenyl)-3-(4-methylphenyl)-6-oxo-1,4-dihydropyrrolo[3,4-d]pyrazol-5-yl]benzoic acid,834903-43-4,Natural Products,GPR55, buy 4-[4-(3-Hydroxyphenyl)-3-(4-methylphenyl)-6-oxo-1,4-dihydropyrrolo[3,4-d]pyrazol-5-yl]benzoic acid , 4-[4-(3-Hydroxyphenyl)-3-(4-methylphenyl)-6-oxo-1,4-dihydropyrrolo[3,4-d]pyrazol-5-yl]benzoic acid supplier , purchase 4-[4-(3-Hydroxyphenyl)-3-(4-methylphenyl)-6-oxo-1,4-dihydropyrrolo[3,4-d]pyrazol-5-yl]benzoic acid , 4-[4-(3-Hydroxyphenyl)-3-(4-methylphenyl)-6-oxo-1,4-dihydropyrrolo[3,4-d]pyrazol-5-yl]benzoic acid cost , 4-[4-(3-Hydroxyphenyl)-3-(4-methylphenyl)-6-oxo-1,4-dihydropyrrolo[3,4-d]pyrazol-5-yl]benzoic acid manufacturer , order 4-[4-(3-Hydroxyphenyl)-3-(4-methylphenyl)-6-oxo-1,4-dihydropyrrolo[3,4-d]pyrazol-5-yl]benzoic acid , high purity 4-[4-(3-Hydroxyphenyl)-3-(4-methylphenyl)-6-oxo-1,4-dihydropyrrolo[3,4-d]pyrazol-5-yl]benzoic acid

Online Inquiry for:

      Fill out the information below

      • Size:Qty: - +

      * Required Fields

                                      Result: