Golgicide AGBF1 inhibitor, potent, reversible and highly specific CAS# 1139889-93-2 |
- Brefeldin A
Catalog No.:BCC4387
CAS No.:20350-15-6
- 20-HETE
Catalog No.:BCC1301
CAS No.:79551-86-3
Quality Control & MSDS
Number of papers citing our products
Chemical structure
3D structure
Cas No. | 1139889-93-2 | SDF | Download SDF |
PubChem ID | 25113626 | Appearance | Powder |
Formula | C17H14F2N2 | M.Wt | 284.3 |
Type of Compound | N/A | Storage | Desiccate at -20°C |
Solubility | DMSO : 125 mg/mL (439.68 mM; Need ultrasonic) | ||
Chemical Name | (3aR,9bS)-6,8-difluoro-4-pyridin-3-yl-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinoline | ||
SMILES | C1C=CC2C1C(NC3=C(C=C(C=C23)F)F)C4=CN=CC=C4 | ||
Standard InChIKey | NJZHEQOUHLZCOX-FTLRAWMYSA-N | ||
Standard InChI | InChI=1S/C17H14F2N2/c18-11-7-14-12-4-1-5-13(12)16(10-3-2-6-20-9-10)21-17(14)15(19)8-11/h1-4,6-9,12-13,16,21H,5H2/t12-,13+,16?/m0/s1 | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Description | Potent, specific and reversible inhibitor of Golgi BFA resistance factor 1 (GBF1), an ArfGEF, that decreases Arf1 activation in vivo. Arrests secretion of soluble and membrane-associated proteins at the endoplasmic reticulum-Golgi intermediate compartment. Causes disassembly and dispersal of the Golgi and trans-Golgi network. |
Golgicide A Dilution Calculator
Golgicide A Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 3.5174 mL | 17.5871 mL | 35.1741 mL | 70.3482 mL | 87.9353 mL |
5 mM | 0.7035 mL | 3.5174 mL | 7.0348 mL | 14.0696 mL | 17.5871 mL |
10 mM | 0.3517 mL | 1.7587 mL | 3.5174 mL | 7.0348 mL | 8.7935 mL |
50 mM | 0.0703 mL | 0.3517 mL | 0.7035 mL | 1.407 mL | 1.7587 mL |
100 mM | 0.0352 mL | 0.1759 mL | 0.3517 mL | 0.7035 mL | 0.8794 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
Golgicide A is a potent, reversible and highly specific GBF1 inhibitor.
GBF1, the ArfGEF responsible for Arf1 activation and COPI recruitment to cis-Golgi membranes, plays an important role in coordinating bidirectional transport and maintaining structural integrity of the Golgi [1].
Golgicide A inhibits the effect of shiga toxin on protein synthesis with an IC50 of 3.3 μM in Vero cells. Immunofluoresence experiments demonstrates that Golgicide A causes complete dispersal of the medial-Golgi markers giantin and the cis-Golgi marker GM130 and results in a rapid redistribution of COPI from the Golgi. Also, Golgicide A causes a decrease in GBF1-mediated Arf1 activation, impairs retrograde toxin transport and arrests secretion of soluble and membrane-anchored proteins [1]. Golgicide A decreases HCV RNA levels and causes redistribution of NS5A in FLRP1 cells and J6/JFH1 cells. In addition, Golgicide A causes accumulation of infectious viral particles in J6/JFH1 cells [2].
References:
[1] Sáenz JB, Sun WJ, Chang JW, et al. Golgicide A reveals essential roles for GBF1 in Golgi assembly and function. Nat Chem Biol, 2009, 5(3): 157-165.
[2] Matto M, Sklan EH, David N, et al. Role for ADP ribosylation factor 1 in the regulation of hepatitis C virus replication. J Virol, 2011, 85(2): 946-956.
- 5-Hydroxy-7,8-dimethoxyflavanone
Catalog No.:BCN6021
CAS No.:113981-49-0
- Cefozopran hydrochloride
Catalog No.:BCC8909
CAS No.:113981-44-5
- (Z)-Akuammidine
Catalog No.:BCN6020
CAS No.:113973-31-2
- Andrographidine E
Catalog No.:BCN4729
CAS No.:113963-41-0
- Andrographidine C
Catalog No.:BCN4730
CAS No.:113963-39-6
- PMPA (NMDA antagonist)
Catalog No.:BCC7308
CAS No.:113919-36-1
- PNU 74654
Catalog No.:BCC7704
CAS No.:113906-27-7
- Koumine N-oxide
Catalog No.:BCN4807
CAS No.:113900-75-7
- Caryophyllene oxide
Catalog No.:BCN6019
CAS No.:1139-30-6
- Cinnamyl 3-aminobut-2-enoate
Catalog No.:BCC8914
CAS No.:113898-97-8
- CX-5461
Catalog No.:BCC3700
CAS No.:1138549-36-6
- Cidofovir
Catalog No.:BCC2546
CAS No.:113852-37-2
- Erythromycin
Catalog No.:BCC4778
CAS No.:114-07-8
- Scopolamine hydrobromide
Catalog No.:BCN1199
CAS No.:114-49-8
- Neostigmine Bromide
Catalog No.:BCC4563
CAS No.:114-80-7
- Phenformin
Catalog No.:BCC9120
CAS No.:114-86-3
- Phaclofen
Catalog No.:BCC6562
CAS No.:114012-12-3
- 16-Epivoacarpine
Catalog No.:BCN3940
CAS No.:114027-38-2
- Humantenidine
Catalog No.:BCN4754
CAS No.:114027-39-3
- Ibandronic acid
Catalog No.:BCC5204
CAS No.:114084-78-5
- Cabozantinib malate (XL184)
Catalog No.:BCC4388
CAS No.:1140909-48-3
- Tirandalydigin
Catalog No.:BCN1860
CAS No.:114118-91-1
- Kuguacin J
Catalog No.:BCN3055
CAS No.:1141453-65-7
- Kuguacin N
Catalog No.:BCN3056
CAS No.:1141453-73-7
Distinct biological effects of golgicide a derivatives on larval and adult mosquitoes.[Pubmed:22818079]
Bioorg Med Chem Lett. 2012 Aug 15;22(16):5177-81.
A collection of Golgicide A (GCA) analogs has been synthesized and evaluated in larval and adult mosquito assays. Commercially available GCA is a mixture of four compounds. One enantiomer (GCA-2) of the major diastereomer in this mixture was shown to be responsible for the unique activity of GCA. Structure-activity studies (SAR) of the GCA architecture suggested that the pyridine ring was most easily manipulated without loss or gain in new activity. Eighteen GCA analogs were synthesized of which five displayed distinct behavior between larval and adult mosquitos, resulting in complete mortality of both Aedes aegypti and Anopheles stephensi larvae. Two analogs from the collection were shown to be distinct from the rest in displaying high selectivity and efficiency in killing An. stephensi larvae.
Golgicide A reveals essential roles for GBF1 in Golgi assembly and function.[Pubmed:19182783]
Nat Chem Biol. 2009 Mar;5(3):157-65.
ADP ribosylation factor 1 (Arf1) plays a critical role in regulating secretory traffic and membrane transport within the Golgi of eukaryotic cells. Arf1 is activated by guanine nucleotide exchange factors (ArfGEFs), which confer spatial and temporal specificity to vesicular transport. We describe here the discovery and characterization of Golgicide A, a potent, highly specific, reversible inhibitor of the cis-Golgi ArfGEF GBF1. Inhibition of GBF1 function resulted in rapid dissociation of COPI vesicle coat from Golgi membranes and subsequent disassembly of the Golgi and trans-Golgi network. Secretion of soluble and membrane-associated proteins was arrested at the endoplasmic reticulum-Golgi intermediate compartment, whereas endocytosis and recycling of transferrin were unaffected by GBF1 inhibition. Internalized shiga toxin was arrested within the endocytic compartment and was unable to reach the dispersed trans-Golgi network. Collectively, these results highlight the central role for GBF1 in coordinating bidirectional transport and maintaining structural integrity of the Golgi.
Differential effects of the putative GBF1 inhibitors Golgicide A and AG1478 on enterovirus replication.[Pubmed:20504936]
J Virol. 2010 Aug;84(15):7535-42.
The genus Enterovirus, belonging to the family Picornaviridae, includes well-known pathogens, such as poliovirus, coxsackievirus, and rhinovirus. Brefeldin A (BFA) impedes replication of several enteroviruses through inhibition of Golgi-specific BFA resistance factor 1 (GBF1), a regulator of secretory pathway integrity and transport. GBF1 mediates the GTP exchange of Arf1, which in activated form recruits coatomer protein complex I (COP-I) to Golgi vesicles, a process important in transport between the endoplasmic reticulum and Golgi vesicles. Recently, the drugs AG1478 and Golgicide A (GCA) were put forward as new inhibitors of GBF1. In this study, we investigated the effects of these putative GBF1 inhibitors on secretory pathway function and enterovirus replication. We show that both drugs induced fragmentation of the Golgi vesicles and caused dissociation of Arf1 and COP-I from Golgi membranes, yet they differed in their effect on GBF1 localization. The effects of AG1478, but not those of GCA, could be countered by overexpression of Arf1, indicating a difference in their molecular mechanism of action. Consistent with this idea, we observed that GCA drastically reduced replication of coxsackievirus B3 (CVB3) and other human enterovirus species, whereas AG1478 had no effect at all on enterovirus replication. Time-of-addition studies and analysis of RNA replication using a subgenomic replicon both showed that GCA suppresses RNA replication of CVB3, which could be countered by overexpression of GBF1. These results indicate that, in contrast to AG1478, GCA inhibits CVB3 RNA replication by targeting GBF1. AG1478 and GCA may be valuable tools to further dissect enterovirus replication.