5-Hydroxy-7,8-dimethoxyflavanoneCAS# 113981-49-0 |
2D Structure
Quality Control & MSDS
3D structure
Package In Stock
Number of papers citing our products
Cas No. | 113981-49-0 | SDF | Download SDF |
PubChem ID | 13963771 | Appearance | Powder |
Formula | C17H16O5 | M.Wt | 300.3 |
Type of Compound | Flavonoids | Storage | Desiccate at -20°C |
Solubility | Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc. | ||
Chemical Name | (2S)-5-hydroxy-7,8-dimethoxy-2-phenyl-2,3-dihydrochromen-4-one | ||
SMILES | COC1=C(C2=C(C(=O)CC(O2)C3=CC=CC=C3)C(=C1)O)OC | ||
Standard InChIKey | VPGMCCIECGDASG-ZDUSSCGKSA-N | ||
Standard InChI | InChI=1S/C17H16O5/c1-20-14-9-12(19)15-11(18)8-13(10-6-4-3-5-7-10)22-17(15)16(14)21-2/h3-7,9,13,19H,8H2,1-2H3/t13-/m0/s1 | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Description | 1. 5-Hydroxy-7,8-dimethoxyflavanone shows anti-inflammatory activity, it can significantly decrease TNF-alpha, IL-6, macrophage inflammatory protein-2 (MIP-2), and nitric oxide (NO) secretions from LPS/IFN-gamma stimulated RAW 264.7 cells. 2. (2S)-5-Hydroxy-7,8-dimethoxyflavanone is weakly active against human nasopharyngeal carcinoma cell line (KB) with IC50 value at 12.86 ug/ml. |
Targets | TNF-α | IL Receptor | NO | NF-kB | HIV |
5-Hydroxy-7,8-dimethoxyflavanone Dilution Calculator
5-Hydroxy-7,8-dimethoxyflavanone Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 3.33 mL | 16.65 mL | 33.3 mL | 66.6001 mL | 83.2501 mL |
5 mM | 0.666 mL | 3.33 mL | 6.66 mL | 13.32 mL | 16.65 mL |
10 mM | 0.333 mL | 1.665 mL | 3.33 mL | 6.66 mL | 8.325 mL |
50 mM | 0.0666 mL | 0.333 mL | 0.666 mL | 1.332 mL | 1.665 mL |
100 mM | 0.0333 mL | 0.1665 mL | 0.333 mL | 0.666 mL | 0.8325 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- Cefozopran hydrochloride
Catalog No.:BCC8909
CAS No.:113981-44-5
- (Z)-Akuammidine
Catalog No.:BCN6020
CAS No.:113973-31-2
- Andrographidine E
Catalog No.:BCN4729
CAS No.:113963-41-0
- Andrographidine C
Catalog No.:BCN4730
CAS No.:113963-39-6
- PMPA (NMDA antagonist)
Catalog No.:BCC7308
CAS No.:113919-36-1
- PNU 74654
Catalog No.:BCC7704
CAS No.:113906-27-7
- Koumine N-oxide
Catalog No.:BCN4807
CAS No.:113900-75-7
- Caryophyllene oxide
Catalog No.:BCN6019
CAS No.:1139-30-6
- Cinnamyl 3-aminobut-2-enoate
Catalog No.:BCC8914
CAS No.:113898-97-8
- CX-5461
Catalog No.:BCC3700
CAS No.:1138549-36-6
- Cidofovir
Catalog No.:BCC2546
CAS No.:113852-37-2
- N-p-coumaroyl-N'-caffeoylputrescine
Catalog No.:BCN6018
CAS No.:1138156-77-0
- Golgicide A
Catalog No.:BCC4373
CAS No.:1139889-93-2
- Erythromycin
Catalog No.:BCC4778
CAS No.:114-07-8
- Scopolamine hydrobromide
Catalog No.:BCN1199
CAS No.:114-49-8
- Neostigmine Bromide
Catalog No.:BCC4563
CAS No.:114-80-7
- Phenformin
Catalog No.:BCC9120
CAS No.:114-86-3
- Phaclofen
Catalog No.:BCC6562
CAS No.:114012-12-3
- 16-Epivoacarpine
Catalog No.:BCN3940
CAS No.:114027-38-2
- Humantenidine
Catalog No.:BCN4754
CAS No.:114027-39-3
- Ibandronic acid
Catalog No.:BCC5204
CAS No.:114084-78-5
- Cabozantinib malate (XL184)
Catalog No.:BCC4388
CAS No.:1140909-48-3
- Tirandalydigin
Catalog No.:BCN1860
CAS No.:114118-91-1
- Kuguacin J
Catalog No.:BCN3055
CAS No.:1141453-65-7
Anti-inflammatory activity of new compounds from Andrographis paniculata by NF-kappaB transactivation inhibition.[Pubmed:20085279]
J Agric Food Chem. 2010 Feb 24;58(4):2505-12.
Previous studies showed that the ethyl acetate (EtOAc) fraction of Andrographis paniculata (AP) possessed anti-inflammatory activity. This study further isolated these active compounds from bioactivity-guided chromatographic fractionation and identified eight pure compounds. Reporter gene assay indicated that 5-hydroxy-7,8-dimethoxyflavone (1), 5-Hydroxy-7,8-dimethoxyflavanone (2), a mix of beta-sitosterol (3a) and stigmasterol (3b), ergosterol peroxide (4), 14-deoxy-14,15-dehydroandrographolide (5), and a new compound, 19-O-acetyl-14-deoxy-11,12-didehydroandrographolide (6a), significantly inhibited the transcriptional activity of NF-kappaB in LPS/IFN-gamma stimulated RAW 264.7 macrophages (P < 0.05). The two most abundant compounds, 14-deoxy-11,12-didehydroandrographolide (7) and andrographolide (8), had less inhibitory activity but exerted greater inhibitory activity by hydrogenation, oxidation, or acetylation to become four derived compounds, 9, 10, 11, and 12. All of the compounds significantly decreased TNF-alpha, IL-6, macrophage inflammatory protein-2 (MIP-2), and nitric oxide (NO) secretions from LPS/IFN-gamma stimulated RAW 264.7 cells. Compounds 5, 11, and 12 exerted the strongest inhibitory effect on NF-kappaB-dependent transactivation in the RAW 264.7 cell, with IC(50) values of 2, 2.2, and 2.4 microg/mL, respectively, providing encouraging results for bioactive compound development.
Structure-function relationships of inhibition of mosquito cytochrome P450 enzymes by flavonoids of Andrographis paniculata.[Pubmed:25015047]
Parasitol Res. 2014 Sep;113(9):3381-92.
The cytochrome P450 monooxygenases are known to play a major role in pyrethroid resistance, by means of increased rate of insecticide detoxification as a result of their overexpression. Inhibition of detoxification enzymes may help disrupting insect detoxifying defense system. The Anopheles minimus CYP6AA3 and CYP6P7 have shown pyrethroid degradation activity and been implicated in pyrethroid resistance. In this study inhibition of the extracts and constituents of Andrographis paniculata Nees. leaves and roots was examined against benzyloxyresorufin O-debenzylation (BROD) of CYP6AA3 and CYP6P7. Four purified flavones (5,7,4'-trihydroxyflavone, 5-hydroxy-7,8-dimethoxyflavone, 5-hydroxy-7,8,2',3'-tetramethoxyflavone, and 5,4'-dihydroxy-7,8,2',3'-tetramethoxyflavone), one flavanone (5-Hydroxy-7,8-dimethoxyflavanone) and a diterpenoid (14-deoxy-11,12-didehydroandrographolide) containing inhibitory effects toward both enzymes were isolated from A. paniculata. Structure-function relationships were observed for modes and kinetics of inhibition among flavones, while diterpenoid and flavanone were inferior to flavones. Docking of flavones onto enzyme homology models reinforced relationships on flavone structures and inhibition modes. Cell-based inhibition assays employing 3-(4,5-dimethylthiazol-2-y-l)-2,5-diphenyltetrazolium bromide (MTT) cytotoxicity assays revealed that these flavonoids efficiently increased susceptibility of CYP6AA3- and CYP6P7-expressing Spodoptera frugiperda (Sf9) cells to cypermethrin toxicity, due to inhibition effects on mosquito enzymes. Thus synergistic effects on cypermethrin toxicity of A. paniculata compounds as a result of enzyme inhibition could be useful for mosquito vector control and insecticide resistance management in the future.
A new bis-andrographolide ether from Andrographis paniculata nees and evaluation of anti-HIV activity.[Pubmed:15702635]
Nat Prod Res. 2005 Apr;19(3):223-30.
Novel bis-andrographolide ether (1) and six known compounds andrographolide, 14-deoxy-11,12-didehydroandrographolide, andrograpanin, 14-deoxyandrographolide, (+/-)-5-Hydroxy-7,8-dimethoxyflavanone, and 5-hydroxy-7,8-dimethoxyflavone have been isolated from the aerial parts of Andrographis paniculata and their structures were established by spectral data. All the isolates were tested for the anti-HIV and cytotoxic activity.