Laricitrin 3-O-glucosideCAS# 39986-90-8 |
Quality Control & MSDS
Number of papers citing our products
Chemical structure
3D structure
Cas No. | 39986-90-8 | SDF | Download SDF |
PubChem ID | 101682256 | Appearance | Powder |
Formula | C22H22O13 | M.Wt | 494.4 |
Type of Compound | Flavonoids | Storage | Desiccate at -20°C |
Solubility | Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc. | ||
Chemical Name | 2-(3,4-dihydroxy-5-methoxyphenyl)-5,7-dihydroxy-3-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxychromen-4-one | ||
SMILES | COC1=CC(=CC(=C1O)O)C2=C(C(=O)C3=C(C=C(C=C3O2)O)O)OC4C(C(C(C(O4)CO)O)O)O | ||
Standard InChIKey | ODXINVOINFDDDD-CLXWZIMCSA-N | ||
Standard InChI | InChI=1S/C22H22O13/c1-32-12-3-7(2-10(26)15(12)27)20-21(17(29)14-9(25)4-8(24)5-11(14)33-20)35-22-19(31)18(30)16(28)13(6-23)34-22/h2-5,13,16,18-19,22-28,30-31H,6H2,1H3/t13-,16-,18+,19-,22+/m1/s1 | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Description | 1. Laricitrin 3-O-glucoside has antioxidant property. |
Laricitrin 3-O-glucoside Dilution Calculator
Laricitrin 3-O-glucoside Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 2.0227 mL | 10.1133 mL | 20.2265 mL | 40.4531 mL | 50.5663 mL |
5 mM | 0.4045 mL | 2.0227 mL | 4.0453 mL | 8.0906 mL | 10.1133 mL |
10 mM | 0.2023 mL | 1.0113 mL | 2.0227 mL | 4.0453 mL | 5.0566 mL |
50 mM | 0.0405 mL | 0.2023 mL | 0.4045 mL | 0.8091 mL | 1.0113 mL |
100 mM | 0.0202 mL | 0.1011 mL | 0.2023 mL | 0.4045 mL | 0.5057 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- p-Hydroxy-5,6-dehydrokawain
Catalog No.:BCN3597
CAS No.:39986-86-2
- Delta-9-Tetrahydrocannabivarinic acid
Catalog No.:BCN7967
CAS No.:39986-26-0
- HOAt
Catalog No.:BCC2815
CAS No.:39968-33-7
- Victoxinine
Catalog No.:BCN6745
CAS No.:39965-06-5
- LY 78335
Catalog No.:BCC6109
CAS No.:39959-66-5
- Norglaucine hydrochloride
Catalog No.:BCN6568
CAS No.:39945-41-0
- 2'-Deoxycytidine hydrochloride
Catalog No.:BCC5434
CAS No.:3992-42-5
- 29-Hydroxyfriedelan-3-one
Catalog No.:BCN5453
CAS No.:39903-21-4
- H-D-Phe(4-OMe)-OH
Catalog No.:BCC2633
CAS No.:39878-65-4
- PHA-680632
Catalog No.:BCC2178
CAS No.:398493-79-3
- JNJ 5207852 dihydrochloride
Catalog No.:BCC6101
CAS No.:398473-34-2
- 19-Hydroxybufalin
Catalog No.:BCN8237
CAS No.:39844-86-5
- H-Thr-OMe.HCl
Catalog No.:BCC3104
CAS No.:39994-75-7
- 24, 25-Dihydroxy VD3
Catalog No.:BCC1303
CAS No.:40013-87-4
- Syringetin-3-O-glucoside
Catalog No.:BCN2610
CAS No.:40039-49-4
- SU 3327
Catalog No.:BCC7725
CAS No.:40045-50-9
- N6-Benzoyladenine
Catalog No.:BCC9075
CAS No.:4005-49-6
- 20-Hydroxyganoderic acid G
Catalog No.:BCN8231
CAS No.:400604-12-8
- Ceftaroline fosamil
Catalog No.:BCC5266
CAS No.:400827-46-5
- H-Arg-pNA.2HCl
Catalog No.:BCC2858
CAS No.:40127-11-5
- Erucifoline
Catalog No.:BCN2081
CAS No.:40158-95-0
- Boc-N-Me-Phe.DCHA
Catalog No.:BCC3348
CAS No.:40163-88-0
- SKA 31
Catalog No.:BCC7743
CAS No.:40172-65-4
- Andarine
Catalog No.:BCC1168
CAS No.:401900-40-1
Comparison on phenolic compounds and antioxidant properties of cabernet sauvignon and merlot wines from four wine grape-growing regions in China.[Pubmed:22832882]
Molecules. 2012 Jul 25;17(8):8804-21.
The antioxidant activities in the Cabernet Sauvignon and Merlot wines from four wine grape-growing regions in China were measured by different analytical assays: 2,2-diphenyl-1-picrylhydrazyl (DPPH.), cupric reducing antioxidant capacity (CUPRAC), superoxide radical-scavenging activity (SRSA) and the contents of total phenols, total flavonoids, total flavanols and total anthocyanins were determined. The results showed that the contents of phenolic compounds and the levels of antioxidant activity in the wine samples greatly varied with cultivar and environmental factors of vine growth. The contents of phenolic compounds and antioxidant activities in Cabernet Sauvignon and Merlot wines from the Yuquanying region of Ningxia were significantly higher than other three regions, followed by the wines from Shacheng region of Hebei, and these parameters were the lowest in Cabernet Sauvignon and Merlot wines from the Changli regions of Hebei and Xiangning region of Shanxi. Taken together, a close relationship between phenolic subclasses and antioxidant activity was observed for the wine samples. Moreover, there were significant discrepancies in the individual phenolic composition and content of four regional Cabernet Sauvignon and Merlot wines, among which the individual phenolic compounds (catechin, epicatechin, cinnamic acid, quercetin-3-O-glucuronide, quercetin-3-O-glucoside, laricitrin-3-O-glucoside and isorhamnetin-3-O-glucoside) revealed a significant correlation (p < 0.05) with the antioxidant capacity in present study, especially for catechin and epicatechin.
Flavonol 3-O-glycosides series of Vitis vinifera Cv. Petit Verdot red wine grapes.[Pubmed:19061313]
J Agric Food Chem. 2009 Jan 14;57(1):209-19.
Petit Verdot grape skins by solid-phase extraction using a combination of reverse-phase and ion-exchanging materials. This procedure allowed us to separate a fraction of anthocyanin-free flavonol 3-O-glycosides that was further split into neutral and acidic subfractions, thus facilitating flavonol identification. By means of semipreparative reverse-phase high-performance liquid chromatography, we isolated several of these flavonol 3-O-glycosides for structural elucidation. The identification of different flavonol 3-O-glycosides was based on liquid chromatography-diode array detection-electrospray ionization-tandem mass spectrometry and NMR data when available. The results suggest that red grape flavonol 3-O-glycosides comprise three different complete series, according to the nature of the sugar moiety linked to the C-3 position. The 3-O-glucosides were the main derivative of the six possible flavonol aglycones (kaempferol, quercetin, isorhamnetin, myricetin, laricitrin, and syringetin), whereas the 3-O-galactoside derivatives were found as minor compounds for all of the flavonol aglycones. The 3-O-glucuronides are the third kind of red grape flavonol derivatives and normally account as minor compounds for all of the flavonol aglycones, with the exception of quercetin 3-O-glucuronide, which was as abundant as quercetin 3-O-glucoside. In addition, the presence of quercetin 3-O-(6"-rhamnosyl)-glucoside (rutin) was also detected as a trace compound in the skins of Petit Verdot grapes.