(+)-trans-IsolimoneneCAS# 5113-87-1 |
Quality Control & MSDS
Number of papers citing our products
Chemical structure
3D structure
Cas No. | 5113-87-1 | SDF | Download SDF |
PubChem ID | 78790 | Appearance | Powder |
Formula | C10H16 | M.Wt | 136 |
Type of Compound | N/A | Storage | Desiccate at -20°C |
Solubility | Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc. | ||
Chemical Name | (3R,6R)-3-methyl-6-prop-1-en-2-ylcyclohexene | ||
SMILES | CC1CCC(C=C1)C(=C)C | ||
Standard InChIKey | TWCNAXRPQBLSNO-UWVGGRQHSA-N | ||
Standard InChI | InChI=1S/C10H16/c1-8(2)10-6-4-9(3)5-7-10/h4,6,9-10H,1,5,7H2,2-3H3/t9-,10-/m0/s1 | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
(+)-trans-Isolimonene Dilution Calculator
(+)-trans-Isolimonene Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 7.3529 mL | 36.7647 mL | 73.5294 mL | 147.0588 mL | 183.8235 mL |
5 mM | 1.4706 mL | 7.3529 mL | 14.7059 mL | 29.4118 mL | 36.7647 mL |
10 mM | 0.7353 mL | 3.6765 mL | 7.3529 mL | 14.7059 mL | 18.3824 mL |
50 mM | 0.1471 mL | 0.7353 mL | 1.4706 mL | 2.9412 mL | 3.6765 mL |
100 mM | 0.0735 mL | 0.3676 mL | 0.7353 mL | 1.4706 mL | 1.8382 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- Cyclic Pifithrin-α hydrobromide
Catalog No.:BCC2407
CAS No.:511296-88-1
- 8-Bromo-cGMP, sodium salt
Catalog No.:BCC6935
CAS No.:51116-01-9
- Gitogenin
Catalog No.:BCN3886
CAS No.:511-96-6
- Plumieride
Catalog No.:BCN5631
CAS No.:511-89-7
- Vitamin D4
Catalog No.:BCC2042
CAS No.:511-28-4
- Totarol
Catalog No.:BCN4627
CAS No.:511-15-9
- Sugiol
Catalog No.:BCN3164
CAS No.:511-05-7
- alpha-Onocerol
Catalog No.:BCN5630
CAS No.:511-01-3
- Nicotine 1'-N-oxide
Catalog No.:BCN6892
CAS No.:51095-86-4
- 2,7-Dihydrohomoerysotrine
Catalog No.:BCN5629
CAS No.:51095-85-3
- Methyl p-hydroxyphenyllactate
Catalog No.:BCN6669
CAS No.:51095-47-7
- Pyrrolidinedithiocarbamate ammonium
Catalog No.:BCC6766
CAS No.:5108-96-3
- (S)-(+)-Ibuprofen
Catalog No.:BCC4042
CAS No.:51146-56-6
- (R)-(-)-Ibuprofen
Catalog No.:BCC4062
CAS No.:51146-57-7
- Episyringaresinol
Catalog No.:BCN7023
CAS No.:51152-20-6
- Boc-D-Asp(OBzl)-OH
Catalog No.:BCC3371
CAS No.:51186-58-4
- Withaferin A
Catalog No.:BCC7495
CAS No.:5119-48-2
- Diosgenin
Catalog No.:BCN6272
CAS No.:512-04-9
- Yamogenin
Catalog No.:BCN8277
CAS No.:512-06-1
- Raffinose
Catalog No.:BCN8427
CAS No.:512-69-6
- Ascaridole
Catalog No.:BCC8121
CAS No.:512-85-6
- Boc-Arg(Z)-OH
Catalog No.:BCC3068
CAS No.:51219-18-2
- 6,8-Diprenylgenistein
Catalog No.:BCN4805
CAS No.:51225-28-6
- Wighteone
Catalog No.:BCN5632
CAS No.:51225-30-0
Sensitization potential and potency of terpene hydroperoxides in the COCAT method.[Pubmed:30963590]
Contact Dermatitis. 2019 Apr 8.
BACKGROUND: Positive patch tests to mixtures of oxidized terpenes containing allergenic hydroperoxides are frequently reported. However, human sensitization data for these hydroperoxides are not available. OBJECTIVES: To analyze and evaluate human sensitization potential and potency of hydroperoxides in vitro using human cells. MATERIALS/METHODS: Limonene-1-hydroperoxide, limonene-2-hydroperoxide, citronellol-7-hydroperoxide, cumene hydroperoxide, 1-(1-hydroperoxy-1-methylethyl)cyclohexene and mixtures of citronellol hydroperoxides (isomers at positions 6/7) and linalool hydroperoxides (isomers at positions 6/7) were studied. All compounds were synthesized except for cumene hydroperoxide that was commercially available. Their potential and potency to activate dendritic cells (DC) was evaluated by measuring the upregulation of CD86 and CD54 on THP-1 cells upon exposure in the cocultured activation test (COCAT) consisting of HaCaT (human keratinocyte cell line) and THP-1 monocytes (as surrogate for DC). RESULTS: Hydroperoxides upregulated CD86 and/or CD54 on cocultured THP-1 cells in a concentration-dependent manner. The results are comparable with their sensitization potency ranking in predictive animal models. CONCLUSIONS: For the first time, human sensitization potential and potency of several hydroperoxides were determined using human cells by the COCAT method. This article is protected by copyright. All rights reserved.
Cationic Moieties in Polystyrene Gels Swollen with d-Limonene Improved Transdermal Delivery System.[Pubmed:30961125]
Polymers (Basel). 2018 Oct 27;10(11). pii: polym10111200.
d-limonene, a terpene and natural compound, has been found to be an excellent penetration enhancer for transdermal drug delivery (TDD). It hence has been incorporated within various transdermal formulations. Herein, we report the application of polystyrene gel swollen with d-limonene and its derivatives for TDD. Poly(styrene-co-divinylbenzene) (PS gel), poly(styrene-co-divinylbenzene-co-4-vinylpyridine) (PS-4VP) gel and poly(styrene-co-divinylbenzene-co-(vinylbenzyl) trimethylammonium chloride) (PS-VBAC gel) were employed as chemical gels to improve the stability of the TDD substrates. The drug permeation properties from the PS gels swollen in limonene were examined, regarding the effect of its network density as well as their rheological properties. The lowest density of the network showed the highest steady flux of the permeation at 43.7 +/- 0.3 mug/cm(2). FT-IR spectra were confirmed for PS-4VP and PS-VBAC, bearing cationic moieties and they could control the release of ibuprofen by the electrostatic interaction at the interface of organogel and skin. The steady state flux of skin permeation got low values from 55.2 +/- 0.8 to 11.6 +/- 2.0 mug/cm(2), when the cationic moieties were increased. Moreover, the chemical network of PS gel swollen in limonene showed high mechanical stability illustrated by elastic modulus (G') of about 98 kPa for 10% cross-linked PS gel. The developed PS gels swollen in limonene show highly promising results, suggesting their possible application in TDD.
Self-microemulsifying Drug Delivery System for Improved Oral Delivery of Limonene: Preparation, Characterization, in vitro and in vivo Evaluation.[Pubmed:30915610]
AAPS PharmSciTech. 2019 Mar 26;20(4):153.
The current investigation aimed at formulating self-microemulsifying drug delivery system (SMEDDS) to ameliorate oral bioavailability of a hydrophobic functional ingredient, limonene. Solubility test, compatibility test, and pseudo-ternary phase diagrams (PTPD) were adopted to screen the optimal compositions of limonene-SMEDDS (L-SMEDDS). The characteristics of this system assessed in vitro, mainly included determination of particle size distribution, observation of morphology via transmission electron microscopy (TEM), testing of drug release in different dissolution media, and evaluation of stability. The oral bioavailability study in vivo of the formulated limonene was performed in rats with the free limonene as the reference. Compared with the free limonene, the distribution study of L-SMEDDS was conducted in Kunming mice after oral administration. The optimized SMEDDS (ethyl oleate, 14.2%; Cremophor EL, 28.6%; isopropanol, 28.6%; and loaded limonene, 28.6%) under the TEM (about 100 nm) was spherical with no significant variations in size/appearance for 30 days at 4, 25, and 60 degrees C. In comparison with free limonene, higher than 89.0% of limonene was released from SMEDDS within 10 min in different dissolution media. An in vivo study showed a 3.71-fold improved oral bioavailability of the formulated limonene compared to the free limonene. The tissue distribution results showed that limonene predominantly accumulated in the various tissues for the L-SMEDDS compared with the free limonene. Hence, L-SMEDDS could remarkably improve the concentration of limonene in the various organs. These findings hinted that the oral bioavailability of limonene could be improved via an effectual delivery system like SMEDDS.