MDL-29951

CAS# 130798-51-5

MDL-29951

2D Structure

Catalog No. BCC4059----Order now to get a substantial discount!

Product Name & Size Price Stock
MDL-29951: 5mg $276 In Stock
MDL-29951: 10mg Please Inquire In Stock
MDL-29951: 20mg Please Inquire Please Inquire
MDL-29951: 50mg Please Inquire Please Inquire
MDL-29951: 100mg Please Inquire Please Inquire
MDL-29951: 200mg Please Inquire Please Inquire
MDL-29951: 500mg Please Inquire Please Inquire
MDL-29951: 1000mg Please Inquire Please Inquire
Related Products

Quality Control of MDL-29951

3D structure

Package In Stock

MDL-29951

Number of papers citing our products

Chemical Properties of MDL-29951

Cas No. 130798-51-5 SDF Download SDF
PubChem ID 446916 Appearance Powder
Formula C12H9Cl2NO4 M.Wt 302.11
Type of Compound N/A Storage Desiccate at -20°C
Solubility DMSO : ≥ 50 mg/mL (165.50 mM)
*"≥" means soluble, but saturation unknown.
Chemical Name 3-(2-carboxyethyl)-4,6-dichloro-1H-indole-2-carboxylic acid
SMILES C1=C(C=C2C(=C1Cl)C(=C(N2)C(=O)O)CCC(=O)O)Cl
Standard InChIKey KNBSYZNKEAWABY-UHFFFAOYSA-N
Standard InChI InChI=1S/C12H9Cl2NO4/c13-5-3-7(14)10-6(1-2-9(16)17)11(12(18)19)15-8(10)4-5/h3-4,15H,1-2H2,(H,16,17)(H,18,19)
General tips For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months.
We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months.
Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it.
About Packaging 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial.
2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial.
3. Try to avoid loss or contamination during the experiment.
Shipping Condition Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request.

Biological Activity of MDL-29951

DescriptionPotent, selective antagonist at the glycine-NMDA site (IC50 = 140 nM against glycine binding). Displays 2500-fold selectivity for the glycine vs. glutamate binding site.

MDL-29951 Dilution Calculator

Concentration (start)
x
Volume (start)
=
Concentration (final)
x
Volume (final)
 
 
 
C1
V1
C2
V2

calculate

MDL-29951 Molarity Calculator

Mass
=
Concentration
x
Volume
x
MW*
 
 
 
g/mol

calculate

Preparing Stock Solutions of MDL-29951

1 mg 5 mg 10 mg 20 mg 25 mg
1 mM 3.3101 mL 16.5503 mL 33.1005 mL 66.2011 mL 82.7513 mL
5 mM 0.662 mL 3.3101 mL 6.6201 mL 13.2402 mL 16.5503 mL
10 mM 0.331 mL 1.655 mL 3.3101 mL 6.6201 mL 8.2751 mL
50 mM 0.0662 mL 0.331 mL 0.662 mL 1.324 mL 1.655 mL
100 mM 0.0331 mL 0.1655 mL 0.331 mL 0.662 mL 0.8275 mL
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations.

Organizitions Citing Our Products recently

 
 
 

Calcutta University

University of Minnesota

University of Maryland School of Medicine

University of Illinois at Chicago

The Ohio State University

University of Zurich

Harvard University

Colorado State University

Auburn University

Yale University

Worcester Polytechnic Institute

Washington State University

Stanford University

University of Leipzig

Universidade da Beira Interior

The Institute of Cancer Research

Heidelberg University

University of Amsterdam

University of Auckland
TsingHua University
TsingHua University
The University of Michigan
The University of Michigan
Miami University
Miami University
DRURY University
DRURY University
Jilin University
Jilin University
Fudan University
Fudan University
Wuhan University
Wuhan University
Sun Yat-sen University
Sun Yat-sen University
Universite de Paris
Universite de Paris
Deemed University
Deemed University
Auckland University
Auckland University
The University of Tokyo
The University of Tokyo
Korea University
Korea University

Background on MDL-29951

MDL-29951 is a novel glycine antagonist of NMDA receptor activation (Ki=0.14 mM, [3H]glycine binding) in vitro and in vivo.

Featured Products
New Products
 

References on MDL-29951

The Orphan G Protein-coupled Receptor GPR17 Negatively Regulates Oligodendrocyte Differentiation via Galphai/o and Its Downstream Effector Molecules.[Pubmed:26620557]

J Biol Chem. 2016 Jan 8;291(2):705-18.

Recent studies have recognized G protein-coupled receptors as important regulators of oligodendrocyte development. GPR17, in particular, is an orphan G protein-coupled receptor that has been identified as oligodendroglial maturation inhibitor because its stimulation arrests primary mouse oligodendrocytes at a less differentiated stage. However, the intracellular signaling effectors transducing its activation remain poorly understood. Here, we use Oli-neu cells, an immortalized cell line derived from primary murine oligodendrocytes, and primary rat oligodendrocyte cultures as model systems to identify molecular targets that link cell surface GPR17 to oligodendrocyte maturation blockade. We demonstrate that stimulation of GPR17 by the small molecule agonist MDL29,951 (2-carboxy-4,6-dichloro-1H-indole-3-propionic acid) decreases myelin basic protein expression levels mainly by triggering the Galphai/o signaling pathway, which in turn leads to reduced activity of the downstream cascade adenylyl cyclase-cAMP-PKA-cAMP response element-binding protein (CREB). In addition, we show that GPR17 activation also diminishes myelin basic protein abundance by lessening stimulation of the exchange protein directly activated by cAMP (EPAC), thus uncovering a previously unrecognized role for EPAC to regulate oligodendrocyte differentiation. Together, our data establish PKA and EPAC as key downstream effectors of GPR17 that inhibit oligodendrocyte maturation. We envisage that treatments augmenting PKA and/or EPAC activity represent a beneficial approach for therapeutic enhancement of remyelination in those demyelinating diseases where GPR17 is highly expressed, such as multiple sclerosis.

3-(2-carboxyethyl)-4,6-dichloro-1H-indole-2-carboxylic acid: an allosteric inhibitor of fructose-1,6-bisphosphatase at the AMP site.[Pubmed:12781194]

Bioorg Med Chem Lett. 2003 Jun 16;13(12):2055-8.

3-(2-Carboxyethyl)-4,6-dichloro-1H-indole-2-carboxylic acid (MDL-29951), an antagonist of the glycine site of the NMDA receptor, has been found to be an allosteric inhibitor of the enzyme fructose 1,6-bisphosphatase. The compound binds at the AMP regulatory site by X-ray crystallography. This represents a new approach to inhibition of fructose 1,6-bisphosphatase and serves as a lead for further drug design.

Blockade of NMDA receptors in the nucleus accumbens elicits spontaneous tail-flicks in rats.[Pubmed:10657545]

Eur J Pharmacol. 2000 Jan 24;388(1):37-47.

The open channel blocker at N-methyl-D-aspartate (NMDA) receptors, dizocilpine, stereospecifically elicited spontaneous tail-flicks in rats - a reaction similar to those elicited by other drugs (tenocyclidine, phencyclidine and ketamine) acting as open channel blockers. Their relative potencies were strongly correlated with affinities at NMDA binding sites and labeled by [3H]dizocilpine in the frontal cortex (r=0.94) and, as determined previously [Millan, M. J., Seguin, L., 1994. Chemically-diverse ligands at the glycine B site coupled to N-methyl-D-aspartate (NMDA) receptors selectively block the late phase of formalin-induced pain in mice, Neurosci. Lett., 178 (1994) 139-143], potency for eliciting antinociception (0. 93). The competitive antagonists at the NMDA receptor recognition site, (+/-)3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP), 4-phosphonomethyl-2-piperidine carboxylic acid (CGS19755), D, L-(E)-2-amino-4-methylphosphono-3-pentanoic acid (CGP37849) and (3E)-1-ethyl ester-2-amino-4-methyl-5-phosphono-3-pentenoic acid (CGP39551), likewise dose-dependently evoked spontaneous tail-flick. In contrast, antagonists/weak partial agonists at the coupled, glycine B site, 7-chloro-4-hydroxy-3-(3-phenoxy) phenyl-2(H)-quinolinone (L701,324), (+)-1-hydroxy-3-aminopyrrolidine-2-one ((+)-HA966), (3R, 4R)-3-amino-1-hydroxy-4-methyl-2-pyrrolidinone (L687,414), 6, 7-dichloro-1, 4-dihydro-5-nitro, 2,3 quinoxalinedione (ACEA1021) and 2-carboxy-4,6-dichloro (1H)-indole-3-propanoic acid (MDL29,951), were inactive. NMDA abolished induction of spontaneous tail-flick by CPP and CGS19755, but not by dizocilpine. Upon bilateral injection into the nucleus accumbens, dizocilpine immediately and dose-dependently elicited spontaneous tail-flick, but it was ineffective in the ventrotegmental area and striatum. Similarly, injection of CPP into the nucleus accumbens elicited spontaneous tail-flick. Neither dizocilpine nor CPP elicited spontaneous tail-flick upon administration onto lumbar spinal cord. In conclusion, a pharmacologically specific spontaneous tail-flick-response is elicited by both open channel blockers and recognition site antagonists, but not glycine B site antagonists, at NMDA receptors. Their actions, mediated in the nucleus accumbens, may be differentiated by their respective resistance and sensitivity to NMDA.

Decoding signaling and function of the orphan G protein-coupled receptor GPR17 with a small-molecule agonist.[Pubmed:24150254]

Sci Signal. 2013 Oct 22;6(298):ra93.

Replacement of the lost myelin sheath is a therapeutic goal for treating demyelinating diseases of the central nervous system (CNS), such as multiple sclerosis (MS). The G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptor (GPCR) GPR17, which is phylogenetically closely related to receptors of the "purinergic cluster," has emerged as a modulator of CNS myelination. However, whether GPR17-mediated signaling positively or negatively regulates this critical process is unresolved. We identified a small-molecule agonist, MDL29,951, that selectively activated GPR17 even in a complex environment of endogenous purinergic receptors in primary oligodendrocytes. MDL29,951-stimulated GPR17 engaged the entire set of intracellular adaptor proteins for GPCRs: G proteins of the Galpha(i), Galpha(s), and Galpha(q) subfamily, as well as beta-arrestins. This was visualized as alterations in the concentrations of cyclic adenosine monophosphate and inositol phosphate, increased Ca(2)(+) flux, phosphorylation of extracellular signal-regulated kinases 1 and 2 (ERK1/2), as well as multifeatured cell activation recorded with label-free dynamic mass redistribution and impedance biosensors. MDL29,951 inhibited the maturation of primary oligodendrocytes from heterozygous but not GPR17 knockout mice in culture, as well as in cerebellar slices from 4-day-old wild-type mice. Because GPCRs are attractive targets for therapeutic intervention, inhibiting GPR17 emerges as therapeutic strategy to relieve the oligodendrocyte maturation block and promote myelin repair in MS.

The glycine site of the NMDA receptor contributes to neurokinin1 receptor agonist facilitation of NMDA receptor agonist-evoked activity in rat dorsal horn neurons.[Pubmed:9027383]

Brain Res. 1997 Jan 9;744(2):235-45.

We have investigated the role of the glycine recognition site of the N-methyl-D-aspartate receptor (the GlyNMDA site) in the facilitation of NMDA receptor agonist-evoked activity in rat dorsal horn neurons that is brought about by neurokinin1 (NK1) receptor agonist and the contribution of protein kinase C (PKC) activation to this phenomenon. Ionophoresis of the selective NMDA receptor agonist 1-aminocyclobutane-cis-1,3-dicarboxylic acid (ACBD) produced a sustained increase in the firing rate of single laminae III-V neurons recorded extracellularly using multibarrelled glass electrodes. The highly selective NK1 receptor agonist acetyl-[Arg6,Sar9,Met(O2)11]-SP6-11 (Sar9-SP) greatly facilitated this response, but under the present conditions had no effect when applied alone or with alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor agonist) at the same current. In the presence of the GLyNMDA site antagonists 2-carboxy-4,6-dichloro-(1H)-indole-3-propanoic acid (MDL 29951), 7-chloro-3-(cyclopropylcarbonyl)-4-hydroxy-2(1H)-quinoline (L701,252), 5,7-dinitroquinaxoline-2,3-dione (MNQX) or 7-chlorothiokynurenic acid (7-CTK), or the PKC inhibitors, chelerythrine or GF109203X, the Sar9-SP-induced facilitation of ACBD-evoked activity was prevented, generally restoring activity to a level similar to that in the presence of ACBD alone, whilst an AMPA receptor antagonist, 6-nitro-7-sulfamoylbenzo(f)quinoxaline-2,3-dione (NBQX) did not inhibit the facilitation. At the same ionophoretic currents these compounds had no effect on ACBD-evoked activity in the absence of Sar9-SP but were inhibitory at significantly greater currents. To further substantiate the importance of the GlyNMDA site in the interaction, the effects of NMDA receptor antagonists selective for alternative recognition sites on the NMDA receptor were investigated. MK-801, a non-competitive NMDA receptor antagonist and arcaine, a competitive inhibitor at the polyamine site, were applied to the facilitated activity seen in the presence of Sar9-SP and ACBD, and to ACBD-evoked activity alone. Unlike the GlyNMDA site antagonists and PKC inhibitors, these compounds reduced both facilitated and ACBD-evoked activity at similar currents. Furthermore, like the NK1 receptor agonist, a selective GlyNMDA site agonist 1-aminocyclopropane carboxylic acid (ACPC) caused facilitation of ACBD-evoked activity which was also blocked by currents of L701,252 that did not alter activity evoked by ACBD alone. These data suggest that activation of the GlyNMDA site (perhaps as a consequence of glycine release or modification of its influence by intracellular signalling cascades) is an essential component of the means by which NK1 receptor activation results in facilitated responsiveness of dorsal horn neurons towards NMDA receptor agonists.

Description

MDL-29951 is a novel glycine antagonist of NMDA receptor activation, with Ki of 0.14 μM for [3H]glycine binding in vitro and in vivo.

Keywords:

MDL-29951,130798-51-5,Natural Products,NMDA Receptor, buy MDL-29951 , MDL-29951 supplier , purchase MDL-29951 , MDL-29951 cost , MDL-29951 manufacturer , order MDL-29951 , high purity MDL-29951

Online Inquiry for:

      Fill out the information below

      • Size:Qty: - +

      * Required Fields

                                      Result: