(±)-MarmesinCAS# 13710-70-8 |
2D Structure
- S-(+)-Marmesin
Catalog No.:BCN8288
CAS No.:13849-08-6
- Nodakenetin
Catalog No.:BCN5604
CAS No.:495-32-9
Quality Control & MSDS
3D structure
Package In Stock
Number of papers citing our products
Cas No. | 13710-70-8 | SDF | Download SDF |
PubChem ID | 604512 | Appearance | Powder |
Formula | C14H14O4 | M.Wt | 246.3 |
Type of Compound | Coumarins | Storage | Desiccate at -20°C |
Solubility | Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc. | ||
Chemical Name | 2-(2-hydroxypropan-2-yl)-2,3-dihydrofuro[3,2-g]chromen-7-one | ||
SMILES | CC(C)(C1CC2=C(O1)C=C3C(=C2)C=CC(=O)O3)O | ||
Standard InChIKey | FWYSBEAFFPBAQU-UHFFFAOYSA-N | ||
Standard InChI | InChI=1S/C14H14O4/c1-14(2,16)12-6-9-5-8-3-4-13(15)18-10(8)7-11(9)17-12/h3-5,7,12,16H,6H2,1-2H3 | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Description | Marmesin has hepatoprotective potential; it also has cytotoxic with a 50% lethal dose of less than 0.5 micrograms/ml, is not as mutagenic or potentially carcinogenic as are AFB1, imperatorin, or MOP with BL activation. |
Targets | AST | ALT |
In vitro | Antioxidant, 5-lipoxygenase inhibitory and cytotoxic activities of compounds isolated from the Ferula lutea flowers.[Pubmed: 25340301]Molecules. 2014 Oct 22;19(10):16959-75.A phytochemical investigation of the Ferula lutea (Poir.) Maire flowers has led to the isolation of a new compound, (E)-5-ethylidenefuran-2(5H)-one-5-O-β-d-glucopyranoside (1), designated ferunide, 4-hydroxy-3-methylbut-2-enoic acid (2), reported for the first time as a natural product, together with nine known compounds, verbenone-5-O-β-d-glucopyranoside (3), 5-O-caffeoylquinic acid (4), methyl caffeate (5), methyl 3,5-O-dicaffeoylquinate (6), 3,5-O-dicaffeoylquinic acid (7), isorhamnetin-3-O-α-l-rhamnopyranosyl(1→6)-β-d-glucopyranoside, narcissin (8), (-)-Marmesin (9), isoimperatorin (10) and 2,3,6-trimethylbenzaldehyde (11). |
In vivo | Hepatoprotective activity of Feronia limonia root.[Pubmed: 22571268]J Pharm Pharmacol. 2012 Jun;64(6):888-96.The aim of this study was to evaluate the hepatoprotective potential of a methanolic extract and of Marmesin isolated from the root bark of Feronia limonia. |
Cell Research | Mutation of Chinese Hamster V79 cells and transformation and mutation of mouse fibroblast C3H/10T1/2 clone 8 cells by aflatoxin B1 and four other furocoumarins isolated from two Nigerian medicinal plants.[Pubmed: 6402296]Cancer Res. 1983 Mar;43(3):1054-8.
|
(±)-Marmesin Dilution Calculator
(±)-Marmesin Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 4.0601 mL | 20.3004 mL | 40.6009 mL | 81.2018 mL | 101.5022 mL |
5 mM | 0.812 mL | 4.0601 mL | 8.1202 mL | 16.2404 mL | 20.3004 mL |
10 mM | 0.406 mL | 2.03 mL | 4.0601 mL | 8.1202 mL | 10.1502 mL |
50 mM | 0.0812 mL | 0.406 mL | 0.812 mL | 1.624 mL | 2.03 mL |
100 mM | 0.0406 mL | 0.203 mL | 0.406 mL | 0.812 mL | 1.015 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- Tolfenamic Acid
Catalog No.:BCC4438
CAS No.:13710-19-5
- Pimecrolimus
Catalog No.:BCC4703
CAS No.:137071-32-0
- Alprenolol hydrochloride
Catalog No.:BCC7490
CAS No.:13707-88-5
- PACAP 1-38
Catalog No.:BCC6962
CAS No.:137061-48-4
- Walsuralactam A
Catalog No.:BCN6734
CAS No.:1370556-82-3
- Episyringaresinol 4'-O-β-D-glncopyranoside
Catalog No.:BCC8957
CAS No.:137038-13-2
- Pseudoginsenoside Rh2
Catalog No.:BCC8353
CAS No.:1370264-16-6
- PRT062607 Hydrochloride
Catalog No.:BCC1869
CAS No.:1370261-97-4
- 3',4'-Di-O-acetyl-2',6'-di-O-p-coumaroylastragalin
Catalog No.:BCN6610
CAS No.:137018-33-8
- Amprolium HCl
Catalog No.:BCC4626
CAS No.:137-88-2
- L-Ascorbyl 6-palmitate
Catalog No.:BCC4915
CAS No.:137-66-6
- Lidocaine
Catalog No.:BCC1084
CAS No.:137-58-6
- BETP
Catalog No.:BCC6286
CAS No.:1371569-69-5
- Toddalosin
Catalog No.:BCN6194
CAS No.:137182-37-7
- Spinorphin
Catalog No.:BCC2349
CAS No.:137201-62-8
- Sodium Orthovanadate
Catalog No.:BCC3856
CAS No.:13721-39-6
- Voriconazole
Catalog No.:BCC2275
CAS No.:137234-62-9
- Dodoviscin A
Catalog No.:BCN3927
CAS No.:1372527-25-7
- Dodoviscin H
Catalog No.:BCN3918
CAS No.:1372527-39-3
- Dodoviscin I
Catalog No.:BCN3926
CAS No.:1372527-40-6
- Dodoviscin J
Catalog No.:BCN3945
CAS No.:1372527-42-8
- GSK2636771
Catalog No.:BCC4993
CAS No.:1372540-25-4
- Chlorantholide A
Catalog No.:BCN4835
CAS No.:1372558-33-2
- Chlorantholide B
Catalog No.:BCN4834
CAS No.:1372558-34-3
Mutation of Chinese Hamster V79 cells and transformation and mutation of mouse fibroblast C3H/10T1/2 clone 8 cells by aflatoxin B1 and four other furocoumarins isolated from two Nigerian medicinal plants.[Pubmed:6402296]
Cancer Res. 1983 Mar;43(3):1054-8.
Mutation by aflatoxin B1 (AFB1), imperatorin, marmesin, chalepin, and 8-methoxypsoralen (MOP), with and without black light (BL; long-wavelength ultraviolet light) activation, was determined at the hypoxanthine-guanine phosphoribosyltransferase locus (8-azaguanine resistance) in Chinese hamster V79 cells and at the ouabain locus in mouse C3H/1OT1/2 cells. Transformation by these furocoumarins under the same activation conditions was also investigated in C3H/1OT1/2 cells. In V79 cells, AFB1 induced a 4-fold maximum mutation frequency over controls under BL activation at a concentration of 5 micrograms/ml; marmesin induced a 2-fold increased mutation frequency at 1.5 micrograms/ml; MOP induced a 19-fold increase at 10 micrograms/ml; chalepin induced a 3-fold increase at 5 micrograms/ml; and imperatorin induced a 20-fold increase at 10 micrograms/ml. Essentially no mutation was observed at the ouabain-resistant (Ouar) locus in C3H/1OT1/2 cells with any of these compounds. In the transformation assays, type II and type III foci were observed at a 1-microgram/ml addition of AFB1 with or without BL activation; while with MOP and imperatorin, these types of foci were observed only with BL activation. Marmesin, although relatively more cytotoxic than the other furocoumarins studied, with a 50% lethal dose of less than 0.5 micrograms/ml, was not as mutagenic or potentially carcinogenic as were AFB1, imperatorin, or MOP with BL activation. These furocoumarins are considered to be involved in the etiology of the high incidence of skin cancer in Nigeria. Our experiments reinforce that concept and suggest that exposure to these furocoumarins may constitute a real carcinogenic hazard.
Hepatoprotective activity of Feronia limonia root.[Pubmed:22571268]
J Pharm Pharmacol. 2012 Jun;64(6):888-96.
OBJECTIVES: The aim of this study was to evaluate the hepatoprotective potential of a methanolic extract and of marmesin isolated from the root bark of Feronia limonia. METHODS: Activity levels of aspartate aminotransaminase (AST) and alanine aminotransaminase (ALT), cell viability and cell death were evaluated in HepG2 cells (human liver hepatoma cells) treated with CCl(4) in the presence or absence of F. limonia extract or marmesin. Plasma activity levels of AST, ALT, bilirubin, alkaline phosphatase, protein, hepatic antioxidants, lipid peroxidation and histopathological evaluations were carried out in rats treated with CCl(4) alone or co-supplemented with F. limonia extract or marmesin in a dose-dependent manner. KEY FINDINGS: In-vitro co-supplementation of F. limonia methanolic extract or marmesin significantly minimized alteration in levels of AST and ALT and improved cell viability. Oral administration of F. limonia methanolic extract or marmesin significantly prevented CCl(4)-induced elevation in the plasma markers of hepatic damage and hepatic lipid peroxidation and a decrease in hepatic antioxidants. In-vivo hepatoprotective potential of F. limonia methanolic extract and marmesin was evident from the minimal alterations in the histoarchitecture of liver. CONCLUSIONS: This has been the first scientific report on the hepatoprotective potential of F. limonia root bark methanolic extract and marmesin.
Antioxidant, 5-lipoxygenase inhibitory and cytotoxic activities of compounds isolated from the Ferula lutea flowers.[Pubmed:25340301]
Molecules. 2014 Oct 22;19(10):16959-75.
A phytochemical investigation of the Ferula lutea (Poir.) Maire flowers has led to the isolation of a new compound, (E)-5-ethylidenefuran-2(5H)-one-5-O-beta-d-glucopyranoside (1), designated ferunide, 4-hydroxy-3-methylbut-2-enoic acid (2), reported for the first time as a natural product, together with nine known compounds, verbenone-5-O-beta-d-glucopyranoside (3), 5-O-caffeoylquinic acid (4), methyl caffeate (5), methyl 3,5-O-dicaffeoylquinate (6), 3,5-O-dicaffeoylquinic acid (7), isorhamnetin-3-O-alpha-l-rhamnopyranosyl(1-->6)-beta-d-glucopyranoside, narcissin (8), (-)-marmesin (9), isoimperatorin (10) and 2,3,6-trimethylbenzaldehyde (11). Compounds 3-10 were identified for the first time in Ferula genus. Their structures were elucidated by spectroscopic methods, including 1D and 2D NMR experiments, mass spectroscopy and X-ray diffraction analysis (compound 2), as well as by comparison with literature data. The antioxidant, anti-inflammatory and cytotoxic activities of isolated compounds were evaluated. Results showed that compound 7 exhibited the highest antioxidant activity with IC50 values of 18 +/- 0.5 micromol/L and 19.7 +/- 0.7 micromol/L by DPPH radical and ABTS radical cation, respectively. The compound 6 exhibited the highest anti-inflammatory activity with an IC50 value of 5.3 +/- 0.1 micromol/L against 5-lipoxygenase. In addition, compound 5 was found to be the most cytotoxic, with IC50 values of 22.5 +/- 2.4 micromol/L, 17.8 +/- 1.1 micromol/L and 25 +/- 1.1 micromol/L against the HCT-116, IGROV-1 and OVCAR-3 cell lines, respectively.