N-NornuciferineCAS# 4846-19-9 |
Quality Control & MSDS
Number of papers citing our products
Chemical structure
3D structure
Cas No. | 4846-19-9 | SDF | Download SDF |
PubChem ID | 12313579 | Appearance | Powder |
Formula | C18H19NO2 | M.Wt | 281.4 |
Type of Compound | Alkaloids | Storage | Desiccate at -20°C |
Solubility | Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc. | ||
Chemical Name | (6aR)-1,2-dimethoxy-5,6,6a,7-tetrahydro-4H-dibenzo[de,g]quinoline | ||
SMILES | COC1=C(C2=C3C(CC4=CC=CC=C42)NCCC3=C1)OC | ||
Standard InChIKey | QQKAHDMMPBQDAC-CQSZACIVSA-N | ||
Standard InChI | InChI=1S/C18H19NO2/c1-20-15-10-12-7-8-19-14-9-11-5-3-4-6-13(11)17(16(12)14)18(15)21-2/h3-6,10,14,19H,7-9H2,1-2H3/t14-/m1/s1 | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Description | 1. N-Nornuciferine can competitively inhibit CYP2D6 activity with Ki values of 2.34 uM. |
Targets | P450 (e.g. CYP17) |
N-Nornuciferine Dilution Calculator
N-Nornuciferine Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 3.5537 mL | 17.7683 mL | 35.5366 mL | 71.0732 mL | 88.8415 mL |
5 mM | 0.7107 mL | 3.5537 mL | 7.1073 mL | 14.2146 mL | 17.7683 mL |
10 mM | 0.3554 mL | 1.7768 mL | 3.5537 mL | 7.1073 mL | 8.8842 mL |
50 mM | 0.0711 mL | 0.3554 mL | 0.7107 mL | 1.4215 mL | 1.7768 mL |
100 mM | 0.0355 mL | 0.1777 mL | 0.3554 mL | 0.7107 mL | 0.8884 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- ProTx II
Catalog No.:BCC6103
CAS No.:484598-36-9
- ProTx I
Catalog No.:BCC6255
CAS No.:484598-35-8
- Brucine sulfate
Catalog No.:BCN2460
CAS No.:4845-99-2
- DPH
Catalog No.:BCC1538
CAS No.:484049-04-9
- Okanin
Catalog No.:BCN6475
CAS No.:484-76-4
- Isodictamnine
Catalog No.:BCN7066
CAS No.:484-74-2
- Angiotensin I (human, mouse, rat)
Catalog No.:BCC1004
CAS No.:484-42-4
- Dictamnine
Catalog No.:BCN1273
CAS No.:484-29-7
- Bergapten
Catalog No.:BCN5582
CAS No.:484-20-8
- 9-Phenanthrol
Catalog No.:BCC7989
CAS No.:484-17-3
- Osthenol
Catalog No.:BCN8342
CAS No.:484-14-0
- Osthol
Catalog No.:BCN5581
CAS No.:484-12-8
- Aristolochic acid C
Catalog No.:BCN2658
CAS No.:4849-90-5
- Reticuline
Catalog No.:BCN5583
CAS No.:485-19-8
- Cytisine
Catalog No.:BCN6270
CAS No.:485-35-8
- (+)-Bicuculline
Catalog No.:BCN1238
CAS No.:485-49-4
- Cinchonidine
Catalog No.:BCC5316
CAS No.:485-71-2
- Formononetin
Catalog No.:BCN1061
CAS No.:485-72-3
- Hydrangetin
Catalog No.:BCN7439
CAS No.:485-90-5
- 5,7,3'-Trihydroxyflavanone
Catalog No.:BCC8269
CAS No.:104732-07-2
- Proanthocyanidins
Catalog No.:BCN6313
CAS No.:4852-22-6
- Choline sulphate
Catalog No.:BCN1792
CAS No.:4858-96-2
- Mirabijalone D
Catalog No.:BCN4071
CAS No.:485811-84-5
- PMX 464
Catalog No.:BCC6348
CAS No.:485842-97-5
Application of ionic liquids based microwave-assisted extraction of three alkaloids N-nornuciferine, O-nornuciferine, and nuciferine from lotus leaf.[Pubmed:20006090]
Talanta. 2010 Jan 15;80(3):1292-7.
The application of ionic liquids based microwave-assisted extraction (ILMAE) was successfully developed for extracting three alkaloids N-Nornuciferine, O-nornuciferine, and nuciferine from lotus leaf. Seven kinds of 1-alkyl-3-methylimidazolium with different cations and anions were investigated in this work and 1.0M 1-hexyl-3-methylimidazolium bromide ([C(6)MIM]Br) solution was selected as solvent. In addition, the microwave parameters including irradiation power, extraction time and solid-liquid ratio were optimized. Compared with the regular MAE and conventional heat-reflux extraction (HRE), the proposed approach exhibited higher efficiency (0.9-43.7% enhanced) and shorter extraction time (from 2h to 2min), which indicated ILMAE was an efficient, rapid and simple sample preparation technique. Moreover, the proposed method was validated by the linearity, reproducibility, and recovery experiments. Good linearity was observed with the regression coefficients (r(2)) between 0.9998 and 0.9999. The recoveries of all methods were in the range of 94.6% and 105.5% with RSD lower than 6.6%, which indicated that the proposed method was credible.
Identification and characterization of potent CYP2D6 inhibitors in lotus leaves.[Pubmed:24561383]
J Ethnopharmacol. 2014 Apr 11;153(1):190-6.
ETHNOPHARMACOLOGICAL RELEVANCE: The herb of lotus (Nelumbo nucifera) leaves is a commonly used traditional Chinese herbal medicine that is utilized for the treatment of sunstroke, to assuage thirst, and to cure both diarrhea and fever in China. Modern pharmacological studies have demonstrated that the herb exhibits various pharmacological effects, such as anti-hyperlipidemia, anti-obesity, anti-oxidant, anti-HIV, anti-microbial, and anti-hypoglycemic activities. Currently, the herb is becoming more popular in China as a "tea drink" or as a main ingredient of some herbal formulations, which implies that the herb and/or its products are now more likely to be concurrently administered with conventional medicines for losing body weight and reducing blood lipids. However, its potential inhibitory effect on human cytochrome P450 (CYP) has not been systemically investigated to date. The present study was performed to assess the potential inhibitory effects of lotus leaf alcoholic extract (LAE), its major fractions, and its main compounds on five CYP isoenzymes (CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A4) in vitro. MATERIAL AND METHODS: Five probe substrates were incubated with human liver microsomes in the presence or absence of the LAE, the alkaloid fraction (AF), the flavonoid fraction (FF), or the individual aporphine alkaloids, namely, nuciferine (NF), N-Nornuciferine (N-NF), and 2-hydroxy-1-methoxyaporphine (HMA). After the incubation, the relative metabolites of the substrates were analyzed using LC-MS/MS. RESULTS: The results showed that the LAE strongly inhibited CYP2D6 with an IC50 value of 12.05microg/mL and weakly inhibited other isoenzymes. In addition, FF was found to weakly inhibit CYP2D6, whereas AF exerted a markedly higher inhibitory effect on CYP2D6 activity with an IC50 value of 0.96microg/mL. The three aporphine alkaloids isolated from the AF (NF, N-NF, and HMA) significantly inhibited CYP2D6 with IC50 values of 3.78, 3.76, and 3.15microM, respectively. Their Lineweaver-Burk plots and Dixon plots showed that NF, N-NF, and HMA competitively inhibited CYP2D6 activity with Ki values of 1.88, 2.34, and 1.56microM, respectively. CONCLUSION: The study revealed that the alkaloid compounds in lotus leaves exert a potent inhibitory effect on CYP2D6 isoenzyme. The possible drug interactions of the leaves and their preparations with conventional medicines should thus be taken into account.