PeruvosideCAS# 1182-87-2 |
2D Structure
Quality Control & MSDS
3D structure
Package In Stock
Number of papers citing our products
Cas No. | 1182-87-2 | SDF | Download SDF |
PubChem ID | 134687896.0 | Appearance | Powder |
Formula | C30H44O9 | M.Wt | 548.67 |
Type of Compound | Steroids | Storage | Desiccate at -20°C |
Solubility | Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc. | ||
Chemical Name | (3S,5R,8S,9S,10R,13S,14S,17S)-3-[(2S,3R,4S,5R,6R)-3,5-dihydroxy-4-methoxy-6-methyloxan-2-yl]oxy-14-hydroxy-13-methyl-17-(5-oxo-2H-furan-3-yl)-1,2,3,4,5,6,7,8,9,11,12,15,16,17-tetradecahydrocyclopenta[a]phenanthrene-10-carbaldehyde | ||
SMILES | CC1C(C(C(C(O1)OC2CCC3(C(C2)CCC4C3CCC5(C4(CCC5C6=CC(=O)OC6)O)C)C=O)O)OC)O | ||
Standard InChIKey | PMTSPAGBAFCORP-JHYRWCSLSA-N | ||
Standard InChI | InChI=1S/C30H44O9/c1-16-24(33)26(36-3)25(34)27(38-16)39-19-6-10-29(15-31)18(13-19)4-5-22-21(29)7-9-28(2)20(8-11-30(22,28)35)17-12-23(32)37-14-17/h12,15-16,18-22,24-27,33-35H,4-11,13-14H2,1-3H3/t16-,18-,19+,20+,21+,22+,24-,25-,26+,27-,28+,29-,30+/m1/s1 | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Peruvoside Dilution Calculator
Peruvoside Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 1.8226 mL | 9.1129 mL | 18.2259 mL | 36.4518 mL | 45.5647 mL |
5 mM | 0.3645 mL | 1.8226 mL | 3.6452 mL | 7.2904 mL | 9.1129 mL |
10 mM | 0.1823 mL | 0.9113 mL | 1.8226 mL | 3.6452 mL | 4.5565 mL |
50 mM | 0.0365 mL | 0.1823 mL | 0.3645 mL | 0.729 mL | 0.9113 mL |
100 mM | 0.0182 mL | 0.0911 mL | 0.1823 mL | 0.3645 mL | 0.4556 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- Flaccidoside II
Catalog No.:BCX1390
CAS No.:140694-19-5
- Arundoin
Catalog No.:BCX1389
CAS No.:4555-56-0
- γ-Linolenic acid
Catalog No.:BCX1388
CAS No.:506-26-3
- Linoleic acid sodium salt
Catalog No.:BCX1387
CAS No.:822-17-3
- Methyl Eicosapentaenoate
Catalog No.:BCX1386
CAS No.:2734-47-6
- Eicosapentaenoic acid ethyl ester
Catalog No.:BCX1385
CAS No.:86227-47-6
- Docosahexaenoic acid methyl ester
Catalog No.:BCX1384
CAS No.:2566-90-7
- Docosahexaenoic acid ethyl ester
Catalog No.:BCX1383
CAS No.:84494-72-4
- Ethyl oleate
Catalog No.:BCX1382
CAS No.:111-62-6
- Methyl arachidonate
Catalog No.:BCX1381
CAS No.:2566-89-4
- Ethyl Arachidonate
Catalog No.:BCX1380
CAS No.:1808-26-0
- Arachidic acid
Catalog No.:BCX1379
CAS No.:506-30-9
- Thevetin A
Catalog No.:BCX1392
CAS No.:37933-66-7
- 3-O-Acetylbufotalin
Catalog No.:BCX1393
CAS No.:4029-69-0
- Smilagenin
Catalog No.:BCX1394
CAS No.:126-18-1
- Elaidic acid
Catalog No.:BCX1395
CAS No.:112-79-8
- 7-Hydroxyisoflavone
Catalog No.:BCX1396
CAS No.:13057-72-2
- 7α-Hydroxysarsasapogenin
Catalog No.:BCX1397
CAS No.:220832-70-2
- Tapinarof
Catalog No.:BCX1398
CAS No.:79338-84-4
- Senecionine acetate
Catalog No.:BCX1399
CAS No.:126642-77-1
- 4,3',5'-Trihydroxyresveratrol
Catalog No.:BCX1400
CAS No.:637776-83-1
- 7β-Hydroxyganoderenic acid F
Catalog No.:BCX1401
CAS No.:1245946-62-6
- 4-Methoxy-2-[(6-O-β-D-xylopyranosyl-β-D-glucopyranosyl)oxy]benzaldehyde
Catalog No.:BCX1402
CAS No.:140484-68-0
- Gylongiposide I
Catalog No.:BCX1403
CAS No.:206876-12-2
Transcriptome Profiling of Cardiac Glycoside Treatment Reveals EGR1 and Downstream Proteins of MAPK/ERK Signaling Pathway in Human Breast Cancer Cells.[Pubmed:37958905]
Int J Mol Sci. 2023 Nov 2;24(21):15922.
Cardiac glycosides (CGs) constitute a group of steroid-like compounds renowned for their effectiveness in treating cardiovascular ailments. In recent times, there has been growing recognition of their potential use as drug leads in cancer treatment. In our prior research, we identified three highly promising CG compounds, namely lanatoside C (LC), Peruvoside (PS), and strophanthidin (STR), which exhibited significant antitumor effects in lung, liver, and breast cancer cell lines. In this study, we investigated the therapeutic response of these CGs, with a particular focus on the MCF-7 breast cancer cell line. We conducted transcriptomic profiling and further validated the gene and protein expression changes induced by treatment through qRT-PCR, immunoblotting, and immunocytochemical analysis. Additionally, we demonstrated the interactions between the ligands and target proteins using the molecular docking approach. The transcriptome analysis revealed a cluster of genes with potential therapeutic targets involved in cytotoxicity, immunomodulation, and tumor-suppressor pathways. Subsequently, we focused on cross-validating the ten most significantly expressed genes, EGR1, MAPK1, p53, CCNK, CASP9, BCL2L1, CDK7, CDK2, CDK2AP1, and CDKN1A, through qRT-PCR, and their by confirming the consistent expression pattern with RNA-Seq data. Notably, among the most variable genes, we identified EGR1, the downstream effector of the MAPK signaling pathway, which performs the regulatory function in cell proliferation, tumor invasion, and immune regulation. Furthermore, we substantiated the influence of CG compounds on translational processes, resulting in an alteration in protein expression upon treatment. An additional analysis of ligand-protein interactions provided further evidence of the robust binding affinity between LC, PS, and STR and their respective protein targets. These findings underscore the intense anticancer activity of the investigated CGs, shedding light on potential target genes and elucidating the probable mechanism of action of CGs in breast cancer.
Yellow oleander (Thevetia peruviana) toxicosis in 4 goats.[Pubmed:37496389]
J Vet Diagn Invest. 2023 Sep;35(5):563-567.
Four alpine goats developed diarrhea soon after the owner placed plant clippings believed to be yellow oleander (Thevetia peruviana) into their pen on a suburban property near Palm Desert, CA, USA. A 1-y-old female goat died suddenly ~1 h after eating the plant clippings and was submitted to the San Bernardino Branch of the California Animal Health and Food Safety Laboratory System for postmortem examination. The main autopsy and histopathologic findings were myocardial hemorrhage and necrosis, consistent with cardiac glycoside intoxication. Rumen contents were analyzed by LC-MS/MS; Peruvoside, a cardiac glycoside, was detected, but oleandrin, the cardiac glycoside of common oleander (Nerium oleander), was not. An LC-high-resolution MS (LC-HRMS) analysis revealed the presence of Peruvoside and neriifolin in the rumen contents and in a tested plant fragment, indicating that the plant was a member of the Thevetia genus. A clipping from the plant fed to the goats and submitted by the owner was identified as yellow oleander, Thevetia peruviana (also known as Cascabela thevetia).
The host-targeting compound peruvoside has a broad-spectrum antiviral activity against positive-sense RNA viruses.[Pubmed:37250169]
Acta Pharm Sin B. 2023 May;13(5):2039-2055.
Positive-sense RNA viruses modify intracellular calcium stores, endoplasmic reticulum and Golgi apparatus (Golgi) to generate membranous replication organelles known as viral factories. Viral factories provide a conducive and substantial enclave for essential virus replication via concentrating necessary cellular factors and viral proteins in proximity. Here, we identified the vital role of a broad-spectrum antiviral, Peruvoside in limiting the formation of viral factories. Mechanistically, we revealed the pleiotropic cellular effect of Src and PLC kinase signaling via cyclin-dependent kinase 1 signaling leads to Golgi-specific brefeldin A-resistance guanine nucleotide exchange factor 1 (GBF1) phosphorylation and Golgi vesiculation by Peruvoside treatment. The ramification of GBF1 phosphorylation fosters GBF1 deprivation consequentially activating downstream antiviral signaling by dampening viral factories formation. Further investigation showed signaling of ERK1/2 pathway via cyclin-dependent kinase 1 activation leading to GBF1 phosphorylation at Threonine 1337 (T1337). We also showed 100% of protection in Peruvoside-treated mouse model with a significant reduction in viral titre and without measurable cytotoxicity in serum. These findings highlight the importance of dissecting the broad-spectrum antiviral therapeutics mechanism and pave the way for consideration of Peruvoside, host-directed antivirals for positive-sense RNA virus-mediated disease, in the interim where no vaccine is available.
Live cell screening identifies glycosides as enhancers of cardiomyocyte cell cycle activity.[Pubmed:36225954]
Front Cardiovasc Med. 2022 Sep 26;9:901396.
Promoting cardiomyocyte proliferation is a promising strategy to regenerate the heart. Yet, so far, it is poorly understood how cardiomyocyte proliferation is regulated, and no factor identified to promote mammalian cardiomyocyte proliferation has been translated into medical practice. Therefore, finding a novel factor will be vital. Here, we established a live cell screening based on mouse embryonic stem cell-derived cardiomyocytes expressing a non-functional human geminin deletion mutant fused to Azami Green (CM7/1-hgem-derived cardiomyocytes). We screened for a subset of compounds of the small molecule library Spectrum Collection and identified 19 potential inducers of stem cell-derived cardiomyocyte proliferation. Furthermore, the pro-proliferative potential of identified candidate compounds was validated in neonatal and adult rat cardiomyocytes as well as human induced pluripotent stem cell-derived cardiomyocytes. 18 of these compounds promoted mitosis and cytokinesis in neonatal rat cardiomyocytes. Among the top four candidates were two cardiac glycosides, Peruvoside and convallatoxin, the flavonoid osajin, and the selective alpha-adrenoceptor antagonist and imidazoline I1 receptor ligand efaroxan hydrochloride. Inhibition of PTEN and GSK-3beta enhanced cell cycle re-entry and progression upon stimulation with cardiac glycosides and osajin, while inhibition of IP3 receptors inhibited the cell cycle-promoting effect of cardiac glycosides. Collectively, we established a screening system and identified potential compounds to promote cardiomyocyte proliferation. Our data suggest that modulation of calcium handling and metabolism promotes cardiomyocyte proliferation, and cardiac glycosides might, besides increasing myocardial contraction force, contribute to cardiac repair by inducing cardiomyocyte proliferation.
Peruvoside is a novel Src inhibitor that suppresses NSCLC cell growth and motility by downregulating multiple Src-EGFR-related pathways.[Pubmed:35812056]
Am J Cancer Res. 2022 Jun 15;12(6):2576-2593. eCollection 2022.
The tyrosine kinase Src plays an essential role in the progression of many cancers and is involved in several epidermal growth factor receptor (EGFR)-mediated signalling pathways. To improve the efficacy of lung cancer treatments, this study aimed to identify novel compounds that can disrupt the Src-EGFR interaction and that are less dependent on EGFR status with wild-type and mutations than other compounds. We used the Src pY419 ELISA as the platform to screen a compound library of more than 400 plant-derived active ingredients and identified Peruvoside as a candidate Src-EGFR crosstalk inhibitor. The effects of Peruvoside were evaluated by western blotting, cell function assays, combination Index (CI)-isobologram analyses and in vivo experiments. Peruvoside significantly suppressed the phosphorylation of Src, EGFR, and signal transducer and activator of transcription 3 (STAT3) in a dose- and time-dependent manner and somewhat suppressed their protein expression. Cell function assays revealed that Peruvoside inhibited the proliferation, invasion, migration, and colony formation of lung cancer cells in vitro and tumour growth in vivo. Furthermore, Peruvoside sensitized gefitinib-resistant tumour cells (A549, PC9/gef and H1975) to gefitinib treatment, indicating that Peruvoside may exert synergistic effects when used in combination with established therapeutic agents. Our data also demonstrated that the inhibitory effects of Peruvoside on lung cancer progression might be attributed to its ability to regulate Src, phosphoinositide 3-kinase (PI3K), c-Jun N-terminal kinase (JNK), Paxillin, p130cas, and EGFR. Our findings suggest that Peruvoside suppresses non-small-cell lung carcinoma (NSCLC) malignancy by downregulating multiple Src-related pathways and could serve as a potential base molecule for developing new anticancer drugs and therapeutic strategies for lung cancer.
Investigation of cardiac glycosides from oleander in a human induced pluripotent stem cells derived cardiomyocyte model.[Pubmed:34371141]
Toxicol Lett. 2021 Oct 10;350:261-266.
The ingestion of Nerium oleander and Thevetia peruviana are common causes for poisoning in Southeast Asia. All parts of the oleander shrub contain cardiac glycosides of the cardenolide type. These glycosides act via inhibition of a Na(+)/K(+)-ATPase which might cause severe arrhythmia and subsequent death in oleander-poisoned patients. The current study uses human induced pluripotent stem cells derived cardiomyocytes (hiPSC-CM) in a microelectrode array (MEA) system to assess the cardiac effects of neriifolin, oleandrin, digitoxigenin, Peruvoside and thevetin A from the oleander plant. Digoxin was used as established reference compound. All tested compounds showed a corrected field potential duration (FPDc) shortening and was the lowest for 600 nM digitoxigenin with -36.9 +/- 1.2 %. Next to the dose-dependent pro-arrhythmic potential, a complete beat arrest of the spontaneously beating hiPSC-CM was observed at a concentration of 300 nM for neriifolin, 600 nM for oleandrin and 1000 nM for digitoxigenin and Peruvoside. Thevetin A did not cause arrhythmia up to a final concentration of 1000 nM. Thus, it was possible to establish a cardiac effect rank order of the tested substances: neriifolin > oleandrin > digitoxigenin = Peruvoside > digoxin > thevetin A.
Peruvoside targets apoptosis and autophagy through MAPK Wnt/beta-catenin and PI3K/AKT/mTOR signaling pathways in human cancers.[Pubmed:31830480]
Life Sci. 2020 Jan 15;241:117147.
AIM: To investigate the cytotoxic effect of Peruvoside and mechanism of action in human cancers. MAIN METHODS: Cell viability was measured by MTT assay and the cell cycle arrest was identified by FACS. Real-time qPCR and western blotting studies were performed to identify important gene and protein expressions in the different pathways leading to apoptosis. Immunofluorescence was performed to understand protein localization and molecular docking studies were performed to identify protein-ligand interactions. KEY FINDINGS: Peruvoside showed significant anti-proliferative activities against human breast, lung, and liver cancer cells in dose-dependent manner. The anti-cancer mechanism was further confirmed by DNA damage and cell cycle arrest at the G0/G1 phase. Dysregulation of Wnt/beta-catenin signaling with Peruvoside treatment resulted in inhibition of cyclin D1 and c-Myc also observed in this study. Furthermore, we identified that Peruvoside can inhibit autophagy by PI3K/AKT/mTOR signaling and through downregulating MEK1. Moreover, Peruvoside has the ability to modulate the expressions of key proteins from the cell cycle, MAPK, NF-kB, and JAK-STAT signaling. In silico studies revealed that Peruvoside has the ability to interact with crucial proteins from different biochemical signaling pathways. SIGNIFICANCE: Our results demonstrated that Peruvoside has the ability to inhibit cancer cell proliferation by modulating the expression of various key proteins involved in cell cycle arrest, apoptosis, and autophagic cell death. Clinical data generated from the present study might provide a novel impetus for targeting several human cancers. Conclusively, our findings suggest that the Peruvoside possesses a broad spectrum of anticancer activity in breast, lung, and liver cancers, which provides an impetus for further investigation of the anticancer potentiality of this biomolecule.
In Vitro Screening to Identify Anti-Toxoplasma Compounds and In Silico Modeling for Bioactivities and Toxicity.[Pubmed:31543702]
Yale J Biol Med. 2019 Sep 20;92(3):369-383. eCollection 2019 Sep.
Toxoplasmosis, which affects more than a billion people worldwide, is a common parasitic infection caused by the obligate intracellular parasite, Toxoplasmagondii. Current treatment strategies have several limitations, including unwanted side effects and poor efficacy. Therefore, newer therapies are needed for toxoplasmosis. Drug repurposing and screening of a vast array of natural and/or synthetic compounds is a viable option for antiparasitic drug discovery. In this study, we screened 62 compounds comprising natural products (NPs) and FDA-approved (FDA) drugs, to identify the hit compounds that suppress the growth of T. gondii. To determine the parasite inhibitory potential of the compounds, host mammalian cells were infected with a transgenic T. gondii strain, and the viability of the parasite was evaluated by luminescence. Of the 62 compounds, tubericidin, sulfuretin, Peruvoside, resveratrol, narasin and diacetoxyscirpenol of the natural product isolates, as well as bortezonib, 10-Hydroxycamtothecin, mebendazole, niflumic acid, clindamycin HCl, mecamylamine, chloroquine, mitomycin C, fenbendazole, daunorubicin, atropine, and cerivastatin of FDA molecules were identified as "hits" with >/= 40 percent anti-parasite action. Additionally, mitomycin C, radicicol, naringenin, gitoxigenin, menadione, botulin, genistin, homobutein, and gelsemin HCl of the natural product isolates, as well as lomofungin, cyclocytidine, prazosin HCl, cerivastatin, camptothecin, flufenamic acid, atropine, daunorubicin, and fenbendazole of the FDA compounds exhibited cytotoxic activity, reducing the host viability by >/= 30 percent. Our findings not only support the prospects of drug repurposing, but also indicate that screening a vast array of molecules may provide viable sources of alternative therapies for parasitic infection.
Antitumor effects of naturally occurring cardiac glycosides convallatoxin and peruvoside on human ER+ and triple-negative breast cancers.[Pubmed:28250972]
Cell Death Discov. 2017 Feb 27;3:17009.
Breast cancer is second most prevalent cancer in women, and the second only to lung cancer in cancer-related deaths. It is a heterogeneous disease and has several subtypes based on the presence or absence of hormone receptors and/or human epidermal growth factor receptor 2 (HER2). Hormone receptor-positive and HER2-enriched cancers can be targeted using hormone and HER2-targeting therapies such as trastuzumab or lapatinib. However, triple-negative breast cancers (TNBCs) do not express any of the receptors and therefore are resistant to most targeted therapies, and cytotoxic chemotherapies are the only viable option available for the treatment of TNBCs. Recently, cardiac glycosides (CGs) have emerged as potential anticancer agents that impart their antiproliferative effect by targeting multiple pathways. In this study our aim was to evaluate anticancer effects of two naturally occurring CGs, Convallatoxin (CT) and Peruvoside (PS), on ER+ and TNBCs cells. CT and PS demonstrated dose- and time-dependent cytotoxic effect on MCF-7 cells, which was further supported by loss of colony formation on drug treatment. CT and PS arrested MCF-7 cells in the G0/G1 phase and reduced the viability of MCF-7-derived mammospheres (MMs). Interestingly, while CT and PS imparted cell death in TNBCs cells from both Caucasians (MDA-MB-231 cells) and African Americans (MDA-MB-468 cells) in a dose- and time-dependent manner, the drugs were much more potent in MDA-MB-468 as compared with TNBC MDA-MB-231 cells. Both drugs significantly inhibited migration and invasion of both MCF-7 and MDA-MB-468 cells. An assessment of intracellular pathways indicated that both drugs were able to modulate several key cellular pathways such as EMT, cell cycle, proliferation and cell death in both cell types. Our data suggest a promising role for CGs in breast cancer treatment specifically in targeting TNBCs derived from African Americans, and provides impetus for further investigation of the anticancer potential of this class of drugs.
Antifertility activity of Thevetia peruviana (Pers.) K. Schum leaf in female Sprague-Dawley rat.[Pubmed:28066105]
Indian J Pharmacol. 2016 Nov-Dec;48(6):669-674.
OBJECTIVES: Thevetia peruviana (Pers.) K. Schum. (Apocynaceae) is known to possess cardioactive glycoside such as thevetin A, thevetin B, neriifolin, Peruvoside, thevetoxin, and ruvoside. Traditionally, T. peruviana leaves are used as abortifacient. The aim of the present study is to evaluate antifertility potential of T. peruviana leaves. SUBJECTS AND METHODS: Cardiac glycoside freed leaves of T. peruviana were extracted with methanol using maceration method. The dried cardiac glycoside-free methanolic extract of T. peruviana leaves (TPL-Me-G) was screened for phytoconstituents and evaluated for its effect on estrogen-primed female Sprague-Dawley rat uterus model. It was further studied for effects on the estrous cycle, implantation, and effect on estrogen and progesterone. STATISTICAL ANALYSIS USED: Statistical analysis was done by ANOVA followed by Dunnett's t-test. RESULTS: Alkaloids, flavonoids, essential oils, carbohydrates, and amino acids were found to be present in the glycoside-free extract. Thin-layer chromatography (TLC) in n-butanol: acetone: water (4:1:5) revealed the presence of quercetin and kaempferol. The presence of flavonoids (quercetin 0.0326% and kaempferol 0.138% on dry weight basis) was reconfirmed by high-performance TLC analysis. The extract was able to induce uterine contractions (EC(50), 0.170 mg/ml) in a dose-dependent manner. Further investigation showed significant (P < 0.001) extension of estrous cycle and anti-implantation activity of the extract by reduction of the progesterone level. CONCLUSIONS: Methanolic extract of T. peruviana leaves (TPL-Me-G) containing quercetin 0.0326% and kaempferol 0.138% possesses a significant (P < 0.001) antifertility potential by virtue of decreasing the progesterone level.
Plant-derived cardiac glycosides: Role in heart ailments and cancer management.[Pubmed:27780131]
Biomed Pharmacother. 2016 Dec;84:1036-1041.
Cardiac glycosides, the cardiotonic steroids such as digitalis have been in use as heart ailment remedy since ages. They manipulate the renin-angiotensin axis to improve cardiac output. However; their safety and efficacy have come under scrutiny in recent times, as poisoning and accidental mortalities have been observed. In order to better understand and exploit them as cardiac ionotropes, studies are being pursued using different cardiac glycosides such as digitoxin, digoxin, ouabain, oleandrin etc. Several cardiac glycosides as Peruvoside have shown promise in cancer control, especially ovary cancer and leukemia. Functional variability of these glycosides has revealed that not all cardiac glycosides are alike. Apart from their specific affinity to sodium-potassium ATPase, their therapeutic dosage and behavior in poly-morbidity conditions needs to be considered. This review presents a concise account of the key findings in recent years with adequate elaboration of the mechanisms. This compilation is expected to contribute towards management of cardiac, cancer, even viral ailments.
Anti-Tumor Effects of Cardiac Glycosides on Human Lung Cancer Cells and Lung Tumorspheres.[Pubmed:27662422]
J Cell Physiol. 2017 Sep;232(9):2497-2507.
Lung cancer is a leading cause of cancer-related death in the United States. Although several drugs have been developed that target individual biomarkers, their success has been limited due to intrinsic or acquired resistance for the specific targets of such drugs. A more effective approach is to target multiple pathways that dictate cancer progression. Cardiac glycosides demonstrate such multimodal effects on cancer cell survival, and our aim was to evaluate the effect of two naturally occurring monosaccaridic cardiac glycosides-Convallatoxin and Peruvoside on lung cancer cells. Although both drugs had significant anti-proliferative effects on H460 and Calu-3 lung cancer cells, Convallatoxin demonstrated twofold higher activity as compared to Peruvoside using both viability and colony forming assays, suggesting a role for the aglycone region in dictating drug potency. The tumor suppressor p53 was found to be important for action of both drugs-p53-underexpressing cells were less sensitive as compared to p53-positive H460 cells. Further, assessment of p53-underexpressing H460 cells showed that drugs were able to arrest cells in the G0/G1 phase of the cell cycle in a dose-dependent manner. Both drugs significantly inhibited migration and invasion of cancer cells and decreased the viability of floating tumorspheres. An assessment of intracellular pathways indicated that both drugs were able to modulate proteins that are involved in apoptosis, autophagy, cell cycle, proliferation, and EMT. Our data suggest, a promising role for cardiac glycosides in lung cancer treatment, and provides impetus for further investigation of the anti-cancer potential of this class of drugs. J. Cell. Physiol. 232: 2497-2507, 2017. (c) 2016 Wiley Periodicals, Inc.
Peruvoside, a Cardiac Glycoside, Induces Primitive Myeloid Leukemia Cell Death.[Pubmed:27110755]
Molecules. 2016 Apr 22;21(4):534.
Despite the available chemotherapy and treatment, leukemia remains a difficult disease to cure due to frequent relapses after treatment. Among the heterogeneous leukemic cells, a rare population referred as the leukemic stem cell (LSC), is thought to be responsible for relapses and drug resistance. Cardiac glycosides (CGs) have been used in treating heart failure despite its toxicity. Recently, increasing evidence has demonstrated its new usage as a potential anti-cancer drug. Ouabain, one of the CGs, specifically targeted CD34(+)CD38(-) leukemic stem-like cells, but not the more mature CD34(+)CD38(+) leukemic cells, making this type of compounds a potential treatment for leukemia. In search of other potential anti-leukemia CGs, we found that Peruvoside, a less studied CG, is more effective than Ouabain and Digitoxin at inducing cell death in primitive myeloid leukemia cells without obvious cytotoxicity on normal blood cells. Similar to Ouabain and Digitoxin, Peruvoside also caused cell cycle arrest at G(2)/M stage. It up-regulates CDKN1A expression and activated the cleavage of Caspase 3, 8 and PARP, resulting in apoptosis. Thus, Peruvoside showed potent anti-leukemia effect, which may serve as a new anti-leukemia agent in the future.
Interaction of digitalis-like compounds with p-glycoprotein.[Pubmed:23104431]
Toxicol Sci. 2013 Feb;131(2):502-11.
Digitalis-like compounds (DLCs), or cardiac glycosides, are produced and sequestered by certain plants and animals as a protective mechanism against herbivores or predators. Currently, the DLCs digoxin and digitoxin are used in the treatment of cardiac congestion and some types of cardiac arrhythmia, despite a very narrow therapeutic index. P-glycoprotein (P-gp; ABCB1) is the only known ATP-dependent efflux transporter that handles digoxin as a substrate. Ten alanine mutants of human P-gp drug-binding amino acids-Leu(65), Ile(306), Phe(336), Ile(340), Phe(343), Phe(728), Phe(942), Thr(945), Leu(975), and Val(982)-were generated and expressed in HEK293 cells with a mammalian baculovirus system. The uptake of [(3)H]-N-methyl-quinidine (NMQ), the P-gp substrate in vesicular transport assays, was determined. The mutations I306A, F343A, F728A, T945A, and L975A abolished NMQ transport activity of P-gp. For the other mutants, the apparent affinities for six DLCs (cymarin, digitoxin, digoxin, Peruvoside, proscillaridin A, and strophanthidol) were determined. The affinities of digoxin, proscillaridin A, Peruvoside, and cymarin for mutants F336A and I340A were decreased two- to fourfold compared with wild type, whereas that of digitoxin and strophanthidol did not change. In addition, the presence of a hydroxyl group at position 12beta seems to reduce the apparent affinity when the side chain of Phe(336) and Phe(942) is absent. Our results showed that a delta-lactone ring and a sugar moiety at 3beta of the steroid body are favorable for DLC binding to P-gp. Moreover, DLC inhibition is increased by hydroxyl groups at positions 5beta and 19, whereas inhibition is decreased by those at positions 1beta, 11alpha, 12beta, and 16beta. The understanding of the P-gp-DLC interaction improves our insight into DLCs toxicity and might enhance the replacement of digoxin with other DLCs that have less adverse drug effects.