Elaidic acid

CAS# 112-79-8

Elaidic acid

2D Structure

Catalog No. BCX1395----Order now to get a substantial discount!

Product Name & Size Price Stock
Elaidic acid: 5mg Please Inquire In Stock
Elaidic acid: 10mg Please Inquire In Stock
Elaidic acid: 20mg Please Inquire Please Inquire
Elaidic acid: 50mg Please Inquire Please Inquire
Elaidic acid: 100mg Please Inquire Please Inquire
Elaidic acid: 200mg Please Inquire Please Inquire
Elaidic acid: 500mg Please Inquire Please Inquire
Elaidic acid: 1000mg Please Inquire Please Inquire
Related Products

Quality Control of Elaidic acid

3D structure

Package In Stock

Elaidic acid

Number of papers citing our products

Chemical Properties of Elaidic acid

Cas No. 112-79-8 SDF Download SDF
PubChem ID 637517.0 Appearance Powder
Formula C18H34O2 M.Wt 282.47
Type of Compound Aliphatics Storage Desiccate at -20°C
Solubility Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc.
Chemical Name (E)-octadec-9-enoic acid
SMILES CCCCCCCCC=CCCCCCCCC(=O)O
Standard InChIKey ZQPPMHVWECSIRJ-MDZDMXLPSA-N
Standard InChI InChI=1S/C18H34O2/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18(19)20/h9-10H,2-8,11-17H2,1H3,(H,19,20)/b10-9+
General tips For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months.
We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months.
Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it.
About Packaging 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial.
2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial.
3. Try to avoid loss or contamination during the experiment.
Shipping Condition Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request.

Elaidic acid Dilution Calculator

Concentration (start)
x
Volume (start)
=
Concentration (final)
x
Volume (final)
 
 
 
C1
V1
C2
V2

calculate

Elaidic acid Molarity Calculator

Mass
=
Concentration
x
Volume
x
MW*
 
 
 
g/mol

calculate

Preparing Stock Solutions of Elaidic acid

1 mg 5 mg 10 mg 20 mg 25 mg
1 mM 3.5402 mL 17.701 mL 35.402 mL 70.804 mL 88.505 mL
5 mM 0.708 mL 3.5402 mL 7.0804 mL 14.1608 mL 17.701 mL
10 mM 0.354 mL 1.7701 mL 3.5402 mL 7.0804 mL 8.8505 mL
50 mM 0.0708 mL 0.354 mL 0.708 mL 1.4161 mL 1.7701 mL
100 mM 0.0354 mL 0.177 mL 0.354 mL 0.708 mL 0.885 mL
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations.

Organizitions Citing Our Products recently

 
 
 

Calcutta University

University of Minnesota

University of Maryland School of Medicine

University of Illinois at Chicago

The Ohio State University

University of Zurich

Harvard University

Colorado State University

Auburn University

Yale University

Worcester Polytechnic Institute

Washington State University

Stanford University

University of Leipzig

Universidade da Beira Interior

The Institute of Cancer Research

Heidelberg University

University of Amsterdam

University of Auckland
TsingHua University
TsingHua University
The University of Michigan
The University of Michigan
Miami University
Miami University
DRURY University
DRURY University
Jilin University
Jilin University
Fudan University
Fudan University
Wuhan University
Wuhan University
Sun Yat-sen University
Sun Yat-sen University
Universite de Paris
Universite de Paris
Deemed University
Deemed University
Auckland University
Auckland University
The University of Tokyo
The University of Tokyo
Korea University
Korea University
Featured Products
New Products
 

References on Elaidic acid

Associations between trans fatty acids and systemic immune-inflammation index: a cross-sectional study.[Pubmed:38678208]

Lipids Health Dis. 2024 Apr 27;23(1):122.

BACKGROUND: Previous studies have demonstrated that trans fatty acids (TFAs) intake was linked to an increased risk of chronic diseases. As a novel systemic inflammatory biomarker, the clinical value and efficacy of the systemic immune-inflammation index (SII) have been widely explored. However, the association between TFAs and SII is still unclear. Therefore, the study aims to investigate the connection between TFAs and SII in US adults. METHODS: The study retrieved data from the National Health and Nutrition Examination Survey (NHANES) for the years 1999-2000 and 2009-2010. Following the exclusion of ineligible participants, the study encompassed a total of 3047 individuals. The research employed a multivariate linear regression model to investigate the connection between circulating TFAs and SII. Furthermore, the restricted cubic spline (RCS) model was utilized to evaluate the potential nonlinear association. Subgroup analysis was also conducted to investigate the latent interactive factors. RESULTS: In this investigation, participants exhibited a mean age of 47.40 years, with 53.91% of them being female. Utilizing a multivariate linear regression model, the independent positive associations between the log2-transformed palmitElaidic acid, the log2 transformed-vaccenic acid, the log2-transformed Elaidic acid, the log2-transformed linolElaidic acid, and the log2-transformed-total sum of TFAs with the SII (all P < 0.05) were noted. In the RCS analysis, no nonlinear relationship was observed between the log2-transformed palmitElaidic acid, the log2 transformed-vaccenic acid, the log2-transformed Elaidic acid, the log2-transformed linolElaidic acid, the log2-transformed-total sum of TFAs and the SII (all P for nonlinear > 0.05). For the stratified analysis, the relationship between the circulating TFAs and the SII differed by the obesity status and the smoking status. CONCLUSIONS: A positive association was investigated between three types of TFA, the sum of TFAs, and the SII in the US population. Additional rigorously designed studies are needed to verify the results and explore the potential mechanism.

Effects of nucleoside analogues, lipophilic prodrugs and elaidic acids on core signaling pathways in cancer cells.[Pubmed:38619266]

Nucleosides Nucleotides Nucleic Acids. 2024 Apr 15:1-11.

OBJECTIVES: Nucleoside analogs such as gemcitabine (GEM; dFdC) and cytarabine (Ara-C) require nucleoside transporters to enter cells, and deficiency in equilibrative nucleoside transporter 1 (ENT1) can lead to resistance to these drugs. To facilitate transport-independent uptake, prodrugs with a fatty acid chain attached to the 5'-position of the ribose group of gemcitabine or cytarabine were developed (CP-4126 and CP-4055, respectively). As antimetabolites can activate cellular survival pathways, we investigated whether the prodrugs or their side-chains had similar or decreased effects. METHODS: Two cell lines A549 (non-small cell lung cancer) and WiDr (colon cancer cells) were exposed for 2-24hr to IC(50) concentrations of GEM, Ara-C, CP-4126, CP4055 and Elaidic acid (EA) concentrations corresponding to the CP-4126 and CP-4055 IC(50). Cells were harvested and analyzed for proteins in cell survival pathways (p-AKT/AKT, p-ERK/ERK, p-P38/P38, GSK-3beta/pGSK-3beta) by using Western Blotting. RESULTS: All drugs and their derivatives showed time- and cell-line-dependent effects. In A549 cells, GEM, CP-4126 and EA-4126 decreased the p-AKT/AKT ratio at 2 and 24 hr. For the p-ERK/ERK ratio, GEM, EA-4126, Ara-C, CP-4045 and EA-4055 exposure led to an increase after 6 hr in A549 cells. Interestingly, Ara-C, CP-4055 and EA-4055 decreased p-ERK/ERK ratio in WiDr cells after 4 hr. In A549 cells, the p-GSK-3beta/GSK-3beta ratio decreased after exposure to Ara-C and CP-4055 but in WiDr cells increased after 24 hr. In A549 cells treatment with Ara-C, CP-4055 and EA-4126 decreased the p-P38/P38 after 6 hr. CONCLUSIONS: The findings suggest that both parent drugs, prodrugs, and the EA chain influence cell survival and signaling pathways.

A Cross-Sectional Pilot Study on Association of Ready-to-Eat and Processed Food Intakes with Metabolic Factors, Serum Trans Fat and Phospholipid Fatty Acid Compositions in Healthy Japanese Adults.[Pubmed:38613065]

Nutrients. 2024 Apr 2;16(7):1032.

Frequently consuming processed and ready-to-eat (RTE) foods is regarded as unhealthy, but evidence on the relationships with circulating metabolic parameters is lacking. Japanese residents of a metropolitan area, 20 to 50 years of age, were studied in terms of anthropometric and biochemical parameters, including circulating trans fat and serum phospholipid fatty acid levels. Processed foods, except drinks and dairy items, were categorized according to requirements for additional ingredients and cooking before eating. Processed and RTE foods were divided according to fat and/or oil content into non-fatty or fatty foods. The participants were grouped into tertiles based on the energy percent (En%) derived from fatty-RTE foods. Fatty-RTE En% showed negative associations with fish, soybean and soybean products, dairy, eggs, vegetables, seaweed/mushrooms/konjac, fruit and non-oily seasonings reflecting lower dietary fiber, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), and mineral and vitamin intakes, while the associations with fat/oil, confectionaries, and sweet beverages were positive. Fatty-RTE En% consumption was positively associated with alkaline phosphatase, leucine aminopeptidase, direct bilirubin, Elaidic acid, and C18:2 but inversely associated with HDL cholesterol, C15:0, C17:0, EPA, and DHA. A higher fatty-RTE food intake was suggested to contribute to unbalanced nutrient intakes, as reflected in lipid metabolic parameters. Further large-scale studies are needed to evaluate the quality and impacts of RTE foods.

Pasture feeding improves the nutritional, textural and techno-functional characteristics of butter.[Pubmed:38580153]

J Dairy Sci. 2024 Apr 3:S0022-0302(24)00638-6.

There is an increasing consumer desire for pasture-derived dairy products, as outdoor pasture-based feeding systems are perceived as a natural environment for animals. Despite this, the number of grazing animals globally has declined as a result of the higher milk yields achieved by indoor, total mixed ration feeding systems, in addition to the changing climatic conditions and lower grazing knowledge and infrastructure. This has led to the development of pasture-fed standards, stipulating the necessity of pasture and its minimum requirements as the primary feed source for products advertising such claims, with various requirements depending on region for which it was produced. This work investigates the differences in the composition and techno-functional properties of butters produced from high, medium and no pasture allowance diets during early, mid and late lactation. Butters were produced using milks collected from 3 feeding systems: outdoor pasture grazing (GRS; high pasture allowance); indoor total mixed ration (TMR; no pasture allowance); and a partial mixed ration (PMR; medium pasture allowance) system, which involved outdoor pasture grazing during the day and indoor TMR feeding at night. Butters were manufactured during early, mid and late lactation. Creams derived from TMR feeding systems exhibited the highest milk fat globule size. The fatty acid profiles of butters also differed significantly as a function of diet, and could be readily discriminated by partial least squares analysis. The most important fatty acids in such analysis, as indicated by their highest variable importance projection scores, were CLA C18:2 cis-9 trans-11 (rumenic acid), C16:1 n-7 trans (trans-palmitoleic acid), C18:1 trans (Elaidic acid), C18:3 n-3 (alpha-linolenic acid) and C18:2 n-6 (linoleic acid). Increasing pasture allowances resulted in reduced crystallization temperatures and hardness of butters, while concurrently increasing the 'yellow' b* color. Yellow color was strongly correlated with Raman peaks commonly associated with carotenoids. The milk fat globule size of cream decreased with advancing stage of lactation and churning time of cream was lowest in early lactation. Differences in the fatty acid and triglyceride contents of butter as a result of lactation and dietary effects demonstrated significant correlations with the hardness, rheological, melting and crystallization profiles of the butters. This work highlighted the improved nutritional profile and functional properties of butter with increasing dietary pasture allowance, primarily as a result of increasing proportions of unsaturated fatty acids. Biomarkers of pasture feeding (response in milk proportionate to the pasture allowance) associated with the pasture-fed status of butters were also identified as a result of the significant changes in the fatty acid profile with increasing pasture allowance. This was achieved through the use of 3 authentic feeding systems with varying pasture allowances, commonly operated by farmers around the world and conducted across 3 stages of lactation.

Linoelaidic acid gavage has more severe consequences on triglycerides accumulation, inflammation and intestinal microbiota in mice than elaidic acid.[Pubmed:38576778]

Food Chem X. 2024 Mar 26;22:101328.

This work aims to study the effects of oral gavage (0.2 mg/g body weight) of Elaidic acid (C18:1-9 t, EA) and linoElaidic acid (C18:2-9 t,12 t, LEA) on lipid metabolism, inflammation and gut homeostasis of mice. Results showed that both EA and LEA gavage significantly increased LDL-c, TC and oxidative stress levels in the liver and serum and may stimulate liver inflammation via NF-kappaB and MAPK signaling pathway. Compared with EA, LEA gavage significantly promoted TAG accumulation and inflammatory signaling. Serum lipidomics revealed that LEA intake significantly increased the concentration of approximately 50 TAGs, while EA gavage primarily caused significant decreases in several SMs. 16S rRNA demonstrated that LEA ingestion markedly changed fecal microbiota by enriching Lactobacillus (phylum Firmicutes), however, EA treatment did not affect it. Overall, LEA gavage has more severe consequences on TAG accumulation, inflammation and microbial structure than EA, highlighting that the number of trans double bonds affects these processes.

Biostimulatory effects of boar seminal gel, saliva and semen on sexual behavior of young boars, gilts and sows.[Pubmed:38442080]

Syst Biol Reprod Med. 2024 Dec;70(1):59-72.

The present study aimed to identify novel biostimulatory compounds in boar seminal gel (SG), saliva and semen using Gas chromatography-mass spectrometry (GC-MS). The bio-stimulatory effect of SG, SG + saliva and SG + semen on young boar for semen collection as well were employed to study bio-stimulatory effects on gilts and sows. Distilled water (DW) exposure was kept as control. SG, saliva and semen were screened for total 105, 96 and 89 compounds. The highest concentration was of alkanes followed by sugar alcohols, then hydrocarbons, amino acids and fatty acids. Elaidic acid was the novel compound identified in pigs. Significantly higher (p < 0.05) number of males got trained in exposure to SG (80%), SG + saliva (75%) and SG + semen (75%) than control (0%). The time (hrs) taken by young boars to get trained on exposure to combination of SG + saliva (244 +/- 22.19) and SG + semen (216 +/- 13.14) was lesser (p < 0.05) than SG (356 +/- 61.85) alone. Interval (hrs) from initiation of exposure for exhibition of different sexual behaviour by males on exposure to SG, saliva and semen was lesser (p < 0.05) than control. Significantly (p < 0.05) higher number of females showed estrus response to exposure of SG (72.72%), SG + saliva (69.23%) and SG + semen (76.92%) than control (0). Interval (hrs) taken to exhibit estrus was shorter (p < 0.05) in females exposed to SG + saliva (201.88 +/- 12.66), SG + semen (198.20 +/- 9.42) than SG (262.14 +/- 20.06) alone. Interval (hrs) for exhibition of different sexual behaviour by females on exposure to SG + saliva and SG + semen was lesser (p < 0.05) than control. In conclusion, novel compounds were identified in boar seminal gel, saliva and semen with biostimulatory properties have been identified in boar SG, saliva and semen. The combined exposure of SG with saliva and semen has more intense biostimulation effect than SG alone for training of young boars and estrus induction in gilts and sows. Such compounds biostimulatory effects can be exploited for augmenting reproductive efficiency in pigs.

Dietary Chinese herbal formula supplementation improves yolk fatty acid profile in aged laying hens.[Pubmed:38404134]

Vet Q. 2024 Dec;44(1):1-11.

Chinese herbal formula (CHF) has the potential to improve the performance of aged laying hens through integrated regulation of various physiological functions. The present study aimed to investigate the effects of dietary CHF supplementation on the yolk fatty acid profile in aged laying hens. A total of 144 healthy 307-day-old Xinyang black-feather laying hens were randomly allocated into two groups: a control group (CON, fed a basal diet) and a CHF group (fed a basal diet supplemented with 1% CHF; contained 0.30% Leonurus japonicus Houtt., 0.20% Salvia miltiorrhiza Bge., 0.25% Ligustrum lucidum Ait., and 0.25% Taraxacum mongolicum Hand.-Mazz. for 120 days). The fatty acid concentrations in egg yolks were analyzed using a targeted metabolomics technology at days 60 and 120 of the trial. The results showed that dietary CHF supplementation increased (p < .05) the concentrations of several saturated fatty acids (SFA, including myristic acid and stearic acid), monounsaturated fatty acids (MUFA, including petroselinic acid, Elaidic acid, trans-11-eicosenoic acid, and cis-11-eicosenoic acid), polyunsaturated fatty acids (PUFA, including linolElaidic acid, linoleic acid, gamma-linolenic acid, alpha-linolenic acid, 11c,14c-eicosadienoic acid, eicosatrienoic acid, homo-gamma-linolenic acid, arachidonic acid, and docosapentaenoic acid), and fatty acid indexes (total MUFA, n-3 and n-6 PUFA, PUFA/SFA, hypocholesterolemic/hypercholesterolaemic ratio, health promotion index, and desirable fatty acids) in egg yolks. Collectively, these findings suggest that dietary CHF supplementation could improve the nutritional value of fatty acids in egg yolks of aged laying hens, which would be beneficial for the production of healthier eggs to meet consumer demands.

Dietary elaidic acid boosts tumoral antigen presentation and cancer immunity via ACSL5.[Pubmed:38350448]

Cell Metab. 2024 Apr 2;36(4):822-838.e8.

Immunomodulatory effects of long-chain fatty acids (LCFAs) and their activating enzyme, acyl-coenzyme A (CoA) synthetase long-chain family (ACSL), in the tumor microenvironment remain largely unknown. Here, we find that ACSL5 functions as an immune-dependent tumor suppressor. ACSL5 expression sensitizes tumors to PD-1 blockade therapy in vivo and the cytotoxicity mediated by CD8(+) T cells in vitro via regulation of major histocompatibility complex class I (MHC-I)-mediated antigen presentation. Through screening potential substrates for ACSL5, we further identify that Elaidic acid (EA), a trans LCFA that has long been considered harmful to human health, phenocopies to enhance MHC-I expression. EA supplementation can suppress tumor growth and sensitize PD-1 blockade therapy. Clinically, ACSL5 expression is positively associated with improved survival in patients with lung cancer, and plasma EA level is also predictive for immunotherapy efficiency. Our findings provide a foundation for enhancing immunotherapy through either targeting ACSL5 or metabolic reprogramming of antigen presentation via dietary EA supplementation.

Analysis of Vaccenic and Elaidic acid in foods using a silver ion cartridge applied to GC x GC-TOFMS.[Pubmed:38260061]

Front Nutr. 2024 Jan 8;10:1320550.

BACKGROUND: Trans fatty acids (TFAs) are unsaturated fatty acids, with vaccenic acid (VA) and Elaidic acid (EA) being the major constituents. While VA has been associated with beneficial effects on health and anti-cancer properties, EA is found in hardened vegetable oils and is linked to an increased risk of cardiovascular diseases. Therefore, this study aimed to develop a novel method for the quantitative measurement of VA and EA, aiming to accurately analyze individual TFA and apply it for the assessment of products containing TFAs. METHODS: The ratio of VA to EA (V/E ratio) was evaluated using a silver ion cartridge (SIC) solid phase extraction method removing cis-fatty acids (cis-FAs). Additionally, comparative analysis of the V/E ratio was conducted by the two methods (SIC treatment and untreated) using comprehensive two-dimensional gas chromatography combined with time-of-flight mass spectrometry (GC x GC-TOFMS). RESULTS: The removal efficiency of cis-FAs was greater than 97.8%. However, the total TFA contents were not so different from SIC treatment. Moreover, this approach not only allowed for a more precise determination of the V/E ratio but also revealed a significant distinction between natural trans fatty acids (N-TFAs) and hydrogenated trans fatty acids (H-TFAs). CONCLUSION: Therefore, the SIC coupled to the GC x GC-TOFMS presented in this study could be applied to discriminate N-TFA and H-TFA contents in dairy and fatty foods.

Industrially produced trans-fatty acids are potent promoters of DNA damage-induced apoptosis.[Pubmed:38191191]

J Toxicol Sci. 2024;49(1):27-36.

trans-Fatty acids (TFAs) are unsaturated fatty acids harboring at least one carbon-carbon double bond in trans configuration, which are categorized into two groups according to their origin: industrial and ruminant TFAs, hereafter called iTFAs and rTFAs, respectively. Numerous epidemiological studies have shown a specific link of iTFAs to various diseases, such as cardiovascular and neurodegenerative diseases. However, there is little evidence for underlying mechanisms that can explain the specific toxicity of iTFAs, and how to mitigate their toxicity. Herein, we show that iTFAs, including Elaidic acid (EA) and linoElaidic acid, but not rTFAs, facilitate apoptosis induced by doxorubicin (Dox), triggering DNA double-strand breaks. We previously established that EA promotes Dox-induced apoptosis by accelerating c-Jun N-terminal kinase (JNK) activation through mitochondrial reactive oxygen species (ROS) overproduction. Consistently, iTFAs specifically enhanced Dox-induced JNK activation. Furthermore, Dox-induced pro-apoptotic signaling by iTFAs was blocked in the presence of oleic acid (OA), the geometrical cis isomer of EA. These results demonstrate that iTFAs specifically exert their toxicity during DNA damage-induced apoptosis, which could be effectively suppressed by OA. Our study provides evidence for understanding the difference in toxic actions between TFA species, and for new strategies to prevent and combat TFA-related diseases.

Effects of continuous intravenous infusion with propofol on intestinal metabolites in rats.[Pubmed:38169795]

Biomed Rep. 2023 Dec 20;20(2):25.

Microbial metabolites play an important role in regulating intestinal homeostasis and immune responses. Propofol is a common anesthetic in clinic, but it is not clear whether it affects intestinal metabolites in rats. Tail vein puncture was performed after adaptive feeding for 1 month in eight 2-month-old rats and they were given continuous intravenous infusion of propofol for 3 h. The feces of rats were divided into different groups based on time periods, with before and after anesthesia with propofol on days 1, 3 and 7 labeled as groups P, A1, A3 and A7, respectively. The effect of continuous intravenous infusion with propofol on rat fecal metabolites was determined using the non-targeted metabolomics technique gas chromatography coupled with a time-of-flight mass spectrometer analysis. The types and contents of metabolites in rat feces were changed after continuous intravenous infusion with propofol, but the changes were not statistically significant. The contents of the metabolites 3-hydroxyphenylacetic acid and palmitic acid increased from day 3 to 7, and it was shown that the two metabolites were positively correlated at a statistically significant level. Linoleic acid decreased to its lowest level on day 3, and it returned to pre-anesthesia level on day 7. At the same time, linoleic acid metabolism was a metabolic pathway that was co-enriched 7 days after infusion with propofol. Spearman correlation analysis showed that there was significant correlation between some differential metabolites and differential microorganisms. It was observed that zymosterol 1, cytosin and Elaidic acid were negatively correlated with Alloprevotella in the A3 vs. P group. In the A7 vs. P group, cortexolone 3 and coprostan-3-one were positively correlated with Faecalibacterium, whilst aconitic acid was negatively correlated with it. In conclusion, the present study revealed statistically insignificant effects of continuous intravenous propofol on the intestinal metabolites in rats.

Genome-Wide Association Study and Identification of Candidate Genes for Intramuscular Fat Fatty Acid Composition in Ningxiang Pigs.[Pubmed:37893916]

Animals (Basel). 2023 Oct 13;13(20):3192.

Ningxiang pigs exhibit a diverse array of fatty acids, making them an intriguing model for exploring the genetic underpinnings of fatty acid metabolism. We conducted a genome-wide association study using a dataset comprising 50,697 single-nucleotide polymorphisms (SNPs) and samples from over 600 Ningxiang pigs. Our investigation yielded novel candidate genes linked to five saturated fatty acids (SFAs), four monounsaturated fatty acids (MUFAs), and five polyunsaturated fatty acids (PUFAs). Significant associations with SFAs, MUFAs, and PUFAs were found for 37, 21, and 16 SNPs, respectively. Notably, some SNPs have significant PVE, such as ALGA0047587, which can explain 89.85% variation in Arachidic acid (C20:0); H3GA0046208 and DRGA0016063 can explain a total of 76.76% variation in Elaidic acid (C18:1n-9(t)), and the significant SNP ALGA0031262 of Arachidonic acid (C20:4n-6) can explain 31.76% of the variation. Several significant SNPs were positioned proximally to previously reported genes. In total, we identified 11 candidate genes (hnRNPU, CEPT1, ATP1B1, DPT, DKK1, PRKG1, EXT2, MEF2C, IL17RA, ITGA1 and ALOX5), six candidate genes (ALOX5AP, MEDAG, ISL1, RXRB, CRY1, and CDKAL1), and five candidate genes (NDUFA4L2, SLC16A7, OTUB1, EIF4E and ROBO2) associated with SFAs, MUFAs, and PUFAs, respectively. These findings hold great promise for advancing breeding strategies aimed at optimizing meat quality and enhancing lipid metabolism within the intramuscular fat (IMF) of Ningxiang pigs.

Analysis of metabolome and transcriptome of longissimus thoracis and subcutaneous adipose tissues reveals the regulatory mechanism of meat quality in MSTN mutant castrated male finishing pigs.[Pubmed:37864922]

Meat Sci. 2024 Jan;207:109370.

The underlying mechanism of myostatin (MSTN) gene mutation impact on porcine carcass and meat quality has not yet been fully understood. The meat quality trait testing of the second filial generation wild-type (WT) and homozygous MSTN mutant (MSTN(-/-)) castrated male finishing pigs, and RNA-seq and metabolomics on the longissimus thoracis (LT) and subcutaneous adipose tissues (SAT) were performed. Compared with WT pigs, MSTN(-/-) pigs had higher carcass lean percentage and lower backfat thickness (all P < 0.01), and also had lower shear force (P < 0.01) and meat redness (P < 0.05). The gene and metabolite expression profiles were different between two groups. Metabolites and genes related to purine metabolism (such as xanthine metabolite (P < 0.05), AMPD3 and XDH genes (all padj < 0.01)), PI3K/Akt/mTOR signaling pathway (such as Phe-Phe and Glu-Glu metabolites (all P < 0.05), WNT4 and AKT2 genes (all padj < 0.01)), antioxidant related pathway (such as GPX2, GPX3, and GPX7 genes (all padj < 0.01)), and extracellular matrix related pathway (such as COL1A1 and COL3A1 genes (all padj < 0.01)) were significantly altered in LT. While metabolites and genes associated to lipid metabolism (such as trans-Elaidic acid and PE(18:1(9Z)/0:0) metabolites (all P < 0.05), ACOX1, ACAT1 and HADH genes (all padj < 0.01)) were significantly changed in SAT. This study revealed the biological mechanisms of homozygous MSTN mutation regulated porcine carcass and meat quality, such as lean meat percentage, fat deposition and tenderness, which provides reference for the utilization of MSTN(-/-) pigs.

[Efficacy, safety, and mechanism of Huangkui Capsules in treating chronic kidney disease: Meta-analysis and integrative bioinformatics].[Pubmed:37802876]

Zhongguo Zhong Yao Za Zhi. 2023 Aug;48(16):4493-4507.

Meta-analysis and integrative bioinformatics were employed to comprehensively study the efficacy, safety, and mechanism of Huangkui Capsules in treating chronic kidney disease(CKD). CNKI, Wanfang, VIP, SinoMed, Cochrane Library, PubMed, EMbase, and Web of Science were searched for randomized controlled trial(RCT) of Huangkui Capsules for CKD from inception to January 3, 2023. The outcome indicators included urine protein, serum creatinine(Scr), and blood urea nitrogen(BUN) levels, and Cochrane Handbook 5.1 and RevMan 5.3 were employed to perform the Meta-analysis of the included RCT. The active ingredients of Huangkui Capsules were retrieved from CNKI, and the targets of CKD from GeneCards, OMIM, and TTD. Cytoscape 3.8.0 was used to build a "component-disease" network and a protein-protein interaction(PPI) network for the screening of core components and targets. Next, a differential analysis of the core targets of Huangkui Capsules for treating CKD was conducted with the clinical samples from GEO to identify the differentially expressed core targets, and correlation analysis and immune cell infiltration analysis were then performed for these targets. A total of 13 RCTs were included for the Meta-analysis, involving 2 372 patients(1 185 in the observation group and 1 187 in the control group). Meta-analysis showed that the Huangkui Capsules group and the losartan potassium group had no significant differences in reducing the urinary protein levels after 12(MD=19.60, 95%CI[-58.66, 97.86], P=0.62) and 24 weeks(MD=-66.00, 95%CI[-264.10, 132.11], P=0.51) of treatment. Huangkui Capsules in combination with conventional treatment was superior to conventional treatment alone(MD=-0.55, 95%CI[-0.86,-0.23], P=0.000 6). Huangkui Capsules combined with conventional treatment was superior to conventional treatment alone in recovering Scr(MD=-9.21, 95%CI[-15.85,-2.58], P=0.006) and BUN(MD=-1.02, 95%CI[-1.83,-0.21], P=0.01). Five patients showed clear adverse reactions, with abdominal or gastrointestinal discomfort. Huangkui Capsules had 43 active ingredients and 393 targets, and the core ingredients were myricetin, quercetin, gossypin, Elaidic acid, dihydromyricetin, isochlorogenic acid B, and caffeic acid. CKD and Huangkui Capsules shared 247 common targets, including 25 core targets. The GEO differential analysis predicted 18 differentially expressed core targets, which were mainly positively correlated with immune cell expression and involved in immune inflammation, oxidative stress, pyroptosis, lipid metabolism, sex hormone metabolism, and cell repair. Conclusively, Huangkui Capsules combined with conventional treatment significantly reduced urine protein, Scr, and BUN. Huangkui Capsules alone and losartan potassium had no significant difference in reducing urine protein. This efficacy of Huangkui Capsules may be associated with the multi-component, multi-target, and multi-pathway responses to immune inflammation and oxidative stress. The included RCT had small sample sizes and general quality. More clinical trial protocols with large sample sizes and rigorous design and in line with international norms are needed to improve the evidence quality, and the results of bioinformatics analysis remain to be confirmed by further studies.

Elaidic acid induced hepatocyte pyroptosis via autophagy-CTSB-NLRP3 pathway.[Pubmed:37748573]

Food Chem Toxicol. 2023 Nov;181:114060.

Elaidic acid (EA, C18:1 trans) is a kind of principal Trans fatty acid (TFA) and is widely found in processed food. Pyroptosis is a form of programmed cell death, distinct from apoptosis and traditional necrosis. Excessive pyroptosis could induce body injury and serious inflammation. However, the effect of EA on pyroptosis has not been reported. In the study, we found that EA exposure caused liver damage and hepatocyte pyroptosis by testing GSDMD-N, Caspase 1, IL-18, and IL-1beta in mice and HepG2 cells. Further exploring the mechanisms, we found that EA-induced pyroptosis depended on Cathepsin B (CTSB)-mediated NLRP3 inflammasome activation. Cell autophagy was closely related to lysosomes. Our study revealed that EA promoted hepatocyte autophagy, and activated autophagy induced lysosomal membrane permeabilization (LMP) and CTSB leakage. Inhibition of autophagy by 3-MA mitigated the CTSB leak, reduced the activation of the NLRP3 inflammasome, and then attenuated the EA-induced pyroptosis. In summary, these results indicated that EA induced hepatocyte pyroptosis via autophagy-CTSB-NLRP3 inflammasome pathway. The study revealed new insights into the toxicity mechanism of EA.

Keywords:

Elaidic acid,112-79-8,Natural Products, buy Elaidic acid , Elaidic acid supplier , purchase Elaidic acid , Elaidic acid cost , Elaidic acid manufacturer , order Elaidic acid , high purity Elaidic acid

Online Inquiry for:

      Fill out the information below

      • Size:Qty: - +

      * Required Fields

                                      Result: