RWJ 50271Inhibitor of LFA-1/ICAM mediated cell adhesion CAS# 162112-37-0 |
- I-BET-762
Catalog No.:BCC4474
CAS No.:1260907-17-2
- Bromodomain Inhibitor, (+)-JQ1
Catalog No.:BCC1132
CAS No.:1268524-70-4
- I-BET151 (GSK1210151A)
Catalog No.:BCC4476
CAS No.:1300031-49-5
- GSK1324726A
Catalog No.:BCC4038
CAS No.:1300031-52-0
- PFI-1 (PF-6405761)
Catalog No.:BCC2225
CAS No.:1403764-72-6
Quality Control & MSDS
Number of papers citing our products
Chemical structure
3D structure
Cas No. | 162112-37-0 | SDF | Download SDF |
PubChem ID | 9953357 | Appearance | Powder |
Formula | C18H17F3N4O2S | M.Wt | 410.41 |
Type of Compound | N/A | Storage | Desiccate at -20°C |
Solubility | Soluble to 100 mM in DMSO and to 10 mM in ethanol | ||
Chemical Name | N-(3-hydroxypropyl)-5-methyl-1-[4-[3-(trifluoromethyl)phenyl]-1,3-thiazol-2-yl]pyrazole-4-carboxamide | ||
SMILES | CC1=C(C=NN1C2=NC(=CS2)C3=CC(=CC=C3)C(F)(F)F)C(=O)NCCCO | ||
Standard InChIKey | HOFGTYCLOKDAES-UHFFFAOYSA-N | ||
Standard InChI | InChI=1S/C18H17F3N4O2S/c1-11-14(16(27)22-6-3-7-26)9-23-25(11)17-24-15(10-28-17)12-4-2-5-13(8-12)18(19,20)21/h2,4-5,8-10,26H,3,6-7H2,1H3,(H,22,27) | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Description | Selective inhibitor of LFA-1 (lymphocyte function-associated antigen-1) adhesion to soluble intercellular adhesion molecule (sICAM) (IC50 = 5 μM in HL60 cells). |
RWJ 50271 Dilution Calculator
RWJ 50271 Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 2.4366 mL | 12.1829 mL | 24.3659 mL | 48.7318 mL | 60.9147 mL |
5 mM | 0.4873 mL | 2.4366 mL | 4.8732 mL | 9.7464 mL | 12.1829 mL |
10 mM | 0.2437 mL | 1.2183 mL | 2.4366 mL | 4.8732 mL | 6.0915 mL |
50 mM | 0.0487 mL | 0.2437 mL | 0.4873 mL | 0.9746 mL | 1.2183 mL |
100 mM | 0.0244 mL | 0.1218 mL | 0.2437 mL | 0.4873 mL | 0.6091 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- SynaptoRedTM C2
Catalog No.:BCC8012
CAS No.:162112-35-8
- 4',4'''-Di-O-methylisochamaejasmin
Catalog No.:BCN6849
CAS No.:1620921-68-7
- Dimesna
Catalog No.:BCC1095
CAS No.:16208-51-8
- Myriceric acid C
Catalog No.:BCN1719
CAS No.:162059-94-1
- SC 58125
Catalog No.:BCC5948
CAS No.:162054-19-5
- L-371,257
Catalog No.:BCC7353
CAS No.:162042-44-6
- UNC0379
Catalog No.:BCC8055
CAS No.:1620401-82-2
- Rofecoxib
Catalog No.:BCC4437
CAS No.:162011-90-7
- Bromosporine
Catalog No.:BCC2226
CAS No.:1619994-69-2
- GSK2801
Catalog No.:BCC6498
CAS No.:1619994-68-1
- LY2857785
Catalog No.:BCC8050
CAS No.:1619903-54-6
- Catechin pentaacetate
Catalog No.:BCN1718
CAS No.:16198-01-9
- Flunitrazepam
Catalog No.:BCC6107
CAS No.:1622-62-4
- Melperone hydrochloride
Catalog No.:BCC7385
CAS No.:1622-79-3
- 5'-Deoxy-5-fluoro-N-[(pentyloxy)carbonyl]cytidine 2',3'-diacetate
Catalog No.:BCN1544
CAS No.:162204-20-8
- Dorsmanin A
Catalog No.:BCN4088
CAS No.:162229-27-8
- CI 1020
Catalog No.:BCC7523
CAS No.:162256-50-0
- 7,3'-Dihydroxy-4'-methoxyflavan
Catalog No.:BCN4698
CAS No.:162290-05-3
- Remodelin
Catalog No.:BCC5571
CAS No.:1622921-15-6
- Baccatin X
Catalog No.:BCN7214
CAS No.:1623069-76-0
- Oplopanaxoside C
Catalog No.:BCC8226
CAS No.:162341-29-9
- Baccatin VIII
Catalog No.:BCN7212
CAS No.:1623410-10-5
- Baccatin IX
Catalog No.:BCN7213
CAS No.:1623410-12-7
- Hydramicromelin D
Catalog No.:BCN7548
CAS No.:1623437-86-4
Identification of an active metabolite of PAR-1 antagonist RWJ-58259 and synthesis of analogues to enhance its metabolic stability.[Pubmed:26927018]
Org Biomol Chem. 2016 Mar 28;14(12):3198-201.
The discontinuation of PAR-1 antagonist RWJ-58259 beyond use as a biological probe is most likely due to it's short half-life in vivo. However, retention of significant in vivo activity beyond the point where most of the RWJ-58259 had been consumed implies the generation of an active metabolite. Herein we describe the biological activity of a predicted metabolite of RWJ-58259 and the synthesis of analogues designed to enhance the metabolic stability of RWJ-58259.
Leveraging Academic-Service Partnerships: Implications for Implementing the RWJ/IOM's Recommendations to Improve Quality, Access, and Value in Academic Medical Centers.[Pubmed:22191053]
ISRN Nurs. 2011;2011:731902.
Transformation of the current healthcare system is critical to achieve improved quality, safety, value, and access. Patients with multiple, chronic health conditions require integrated care coordination yet the current health care system is fragmented and complex. Nursing must play a key role in constructing a system that is value based and patient focused. The Robert Wood Johnson/Institute of Medicine (RWJ/IOM) report on the future of nursing outlines strategic opportunities for nursing to take a lead role in this transformation. Partnerships across academic institutions and health care systems have the potential to address issues through mutual goal setting, sharing of risks, responsibilities, and accountability, and realignment of resources. The purpose of this paper is to present Stony Brook University Medical Center's (SBUMC) academic-service partnership which implemented several of the RWJ/IOM recommendations. The partnership resulted in several initiatives that improved quality, safety, access, and value. It also characterized mutual goal setting, shared missions and values, and a united vision for health care.
Synergistic Effects of Transplanted Endothelial Progenitor Cells and RWJ 67657 in Diabetic Ischemic Stroke Models.[Pubmed:26045601]
Stroke. 2015 Jul;46(7):1938-46.
BACKGROUND AND PURPOSE: An immature vascular phenotype in diabetes mellitus may cause more severe vascular damage and poorer functional outcomes after stroke, and it would be feasible to repair damaged functional vessels using endothelial progenitor cell (EPC) transplantation. However, high glucose induces p38 mitogen-activated protein kinase activation, which can accelerate the senescence and apoptosis of EPCs. The aim of this study was to investigate the combined effects of EPC transplantation and p38 mitogen-activated protein kinase inhibitor administration on diabetic stroke outcomes. METHODS: Bone marrow-derived EPCs were injected intra-arterially into db/db mice after ischemic stroke induction. RWJ 67657 (RWJ), a p38 mitogen-activated protein kinase inhibitor, was administered orally for 7 consecutive days, with the first dose given 30 minutes before stroke induction. Functional outcome was determined at days 0, 1, 7, 14, and 21. Angiogenesis, neurogenesis, infarct volume, and Western blotting assays were performed on day 7, and white matter remodeling was determined on day 14. RESULTS: Neither EPC transplantation nor RWJ administration alone significantly improved diabetic stroke outcome although RWJ displayed a potent anti-inflammatory effect. By both improving the functioning of EPCs and reducing inflammation, EPC transplantation plus RWJ administration in vivo synergistically promoted angiogenesis and neurogenesis after diabetic stroke. In addition, the white matter remodeling, behavioral scores, and expressions of vascular endothelial growth factor and brain-derived neurotrophic factor were significantly increased in diabetic mice treated with both EPCs and RWJ. CONCLUSIONS: The combination of EPC transplantation and RWJ administration accelerated recovery from diabetic stroke, which might have been caused by increased levels of proangiogenic and neurotrophic factors.