Rosmarinic acidAnti-inflammatory, cytostatic and antiviral; GPR35 agonist CAS# 20283-92-5 |
Quality Control & MSDS
Number of papers citing our products
Chemical structure
3D structure
Cas No. | 20283-92-5 | SDF | Download SDF |
PubChem ID | 5281792 | Appearance | White-beige powder |
Formula | C18H16O8 | M.Wt | 360.31 |
Type of Compound | Phenylpropanoids | Storage | Desiccate at -20°C |
Synonyms | Labiatenic acid | ||
Solubility | DMSO : 100 mg/mL (277.54 mM; Need ultrasonic) | ||
Chemical Name | (2R)-3-(3,4-dihydroxyphenyl)-2-[(E)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxypropanoic acid | ||
SMILES | C1=CC(=C(C=C1CC(C(=O)O)OC(=O)C=CC2=CC(=C(C=C2)O)O)O)O | ||
Standard InChIKey | DOUMFZQKYFQNTF-WUTVXBCWSA-N | ||
Standard InChI | InChI=1S/C18H16O8/c19-12-4-1-10(7-14(12)21)3-6-17(23)26-16(18(24)25)9-11-2-5-13(20)15(22)8-11/h1-8,16,19-22H,9H2,(H,24,25)/b6-3+/t16-/m1/s1 | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Description | Rosmarinic acid has antiviral, antibacterial, antiinflammatory, neuroprotective, anticancer, anti-lipid peroxidative, apoptotic,and antioxidant activities. It is used for food preservation, and to treat peptic ulcers, arthritis, cataract, cancer, rheumatoid arthritis, bronchial asthma, and several human neurodegenerative diseases caused by oxidative stress. Rosmarinic acid has the ability to block complement fixation, inhibit lipoxygenase and cyclooxygenase activity and inhibit the expression of CCL11 and CCR3 by suppressing the IKK-β activity in NF-κB activation signaling. It inhibits MAO-A, MAO-B and COMT enzymes with IC50s of 50.1, 184.6 and 26.7 μM, respectively. |
Targets | TNF-α | IL Receptor | NO | JNK | p38MAPK | NF-kB | ROS | PI3K | MAO-A | MAO-B | COMT | IKK |
In vitro | Epigallocatechin gallate, ellagic acid, and rosmarinic acid perturb dNTP pools and inhibit de novo DNA synthesis and proliferation of human HL-60 promyelocytic leukemia cells: Synergism with arabinofuranosylcytosine.[Pubmed: 25636891]Phytomedicine. 2015 Jan 15;22(1):213-22.Epigallocatechin gallate (EGCG), ellagic acid (EA) and Rosmarinic acid (RA) are natural polyphenols exerting cancer chemopreventive effects. Ribonucleotide reductase (RR; EC 1.17.4.1) converts ribonucleoside diphosphates into deoxyribonucleoside diphosphates being essential for DNA replication, which is why the enzyme is considered an excellent target for anticancer therapy.
Rosmarinic acid mediated neuroprotective effects against H2O2-induced neuronal cell damage in N2A cells.[Pubmed: 25058919 ]Life Sci. 2014 Sep 15;113(1-2):7-13.Oxidative stress plays a key role in several ailments including neurodegenerative conditions. The aim of the study was to demonstrate the effect of Rosmarinic acid (RA) in preventing oxidative stress related death of neuronal cell lines.
Rosmarinic acid induces melanogenesis through protein kinase A activation signaling.[Pubmed: 17651699 ]Biochem Pharmacol. 2007 Oct 1;74(7):960-8.Melanogenesis is a physiological process that results in the synthesis of melanin pigments, which play a crucial protective role against skin photocarcinogenesis.
Rosmarinic acid as a downstream inhibitor of IKK-beta in TNF-alpha-induced upregulation of CCL11 and CCR3.[Pubmed: 16604092 ]Br J Pharmacol. 2006 Jun;148(3):366-75.1. Tumor necrosis factor (TNF)-alpha is known to induce the expression of CCL11 and CCR3 via the activation of NF-kappaB. CCL11 (eotaxin), the C-C chemokine, is a potent chemoattractant for eosinophils and Th2 lymphocytes, and CCR3 is the receptor for CCL11.
|
In vivo | Rosmarinic acid modulates the antioxidant status and protects pancreatic tissues from glucolipotoxicity mediated oxidative stress in high-fat diet: streptozotocin-induced diabetic rats.[Pubmed: 25735949]Mol Cell Biochem. 2015 Mar 4.Persistent hyperglycemia and elevated levels of free fatty acids (FFA) contribute to oxidative stress, a proximate cause for the onset and progression of diabetes and its complications.
|
Cell Research | Rosmarinic Acid Attenuates Cell Damage against UVB Radiation-Induced Oxidative Stress via Enhancing Antioxidant Effects in Human HaCaT Cells.[Pubmed: 26759705 ]Biomol Ther (Seoul). 2016 Jan;24(1):75-84.Cell lines:HaCaT cells |
Animal Research | Antiepileptogenic, antioxidant and genotoxic evaluation of rosmarinic acid and its metabolite caffeic acid in mice.[Pubmed: 25498895]Life Sci. 2015 Feb 1;122:65-71.Animal Models: Male CF-1 mice |
Rosmarinic acid Dilution Calculator
Rosmarinic acid Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 2.7754 mL | 13.8769 mL | 27.7539 mL | 55.5078 mL | 69.3847 mL |
5 mM | 0.5551 mL | 2.7754 mL | 5.5508 mL | 11.1016 mL | 13.8769 mL |
10 mM | 0.2775 mL | 1.3877 mL | 2.7754 mL | 5.5508 mL | 6.9385 mL |
50 mM | 0.0555 mL | 0.2775 mL | 0.5551 mL | 1.1102 mL | 1.3877 mL |
100 mM | 0.0278 mL | 0.1388 mL | 0.2775 mL | 0.5551 mL | 0.6938 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
Rosmarinic acid (RA) is a widespread phenolic ester compound in the plants. Rosmarinic acid inhibits MAO-A, MAO-B and COMT enzymes with IC50s of 50.1, 184.6 and 26.7 μM, respectively.
In Vitro:Rosmarinic acid (RA) shows an in vitro multifunctional profile characterized by antioxidant effects, and monoamine oxidases (MAO-A and MAO-B) and catechol-O-methyl transferase (COMT) inhibition. Rosmarinic acid shows antioxidant effects against hydroxyl (HO(•)) and nitric oxide (NO) radicals (IC50 of 29.4 and 140 μM, respectively), and inhibition of lipid peroxidation (IC50 of 19.6 μM)[1]. Rosmarinic acid (RA) exerts a significant cytoprotective effect by scavenging intracellular ROS induced by UVB. In H2O2-treated cells, 2.5 μM Rosmarinic acid scavenges 60% of intracellular ROS compared to 77% of intracellular ROS scavenging effect in N-acetyl-L-cysteine (NAC)[2].
In Vivo:Rosmarinic acid (RA) is a widespread phenolic ester compound in the plants, particularly those in the Labiatae family of herbs, such as Rosmarinus officinali, Salvia miltiorrhiza, and Prunella vulgaris. Rosmarinic acid suppresses colonic inflammation in dextran sulphate sodium (DSS)-induced mice via dual inhibition of NF-κB and STAT3 activation. In the DSS-induced colitis model, Treatment with Rosmarinic acid (30, 60 mg/kg, p.o.) markedly attenuates the production of cytokines[3].
References:
[1]. Andrade JM, et al. Combining in vitro and in silico approaches to evaluate the multifunctional profile of rosmarinic acid from Blechnum brasiliense on targets related to neurodegeneration. Chem Biol Interact. 2016 Jul 25;254:135-45.
[2]. Fernando PM, et al. Rosmarinic Acid Attenuates Cell Damage against UVB Radiation-Induced Oxidative Stress via Enhancing Antioxidant Effects in Human HaCaT Cells. Biomol Ther (Seoul). 2016 Jan;24(1):75-84.
[3]. Jin BR, et al. Rosmarinic acid suppresses colonic inflammation in dextran sulphate sodium (DSS)-induced mice via dual inhibition of NF-κB and STAT3 activation. Sci Rep. 2017 Apr 6;7:46252.
- Safinamide Mesylate
Catalog No.:BCC2320
CAS No.:202825-46-5
- Ralfinamide mesylate
Catalog No.:BCC7844
CAS No.:202825-45-4
- BMS 191011
Catalog No.:BCC7448
CAS No.:202821-81-6
- Licoagrochalcone A
Catalog No.:BCC8197
CAS No.:202815-28-9
- Orexin B (mouse)
Catalog No.:BCC5766
CAS No.:202801-92-1
- 4-Methoxycoumarine
Catalog No.:BCN6536
CAS No.:20280-81-3
- Homodihydrocapsaicin I
Catalog No.:BCN7844
CAS No.:20279-06-5
- Forsythenside A
Catalog No.:BCN6440
CAS No.:202721-09-3
- Nicotinamide N-oxide
Catalog No.:BCN1969
CAS No.:1986-81-8
- 3α-Bis-(4-fluorophenyl) methoxytropane hydrochloride
Catalog No.:BCC6846
CAS No.:202646-03-5
- JHW 007 hydrochloride
Catalog No.:BCC7923
CAS No.:202645-74-7
- DL-AP4
Catalog No.:BCC6548
CAS No.:20263-07-4
- 8-Hydroxy-3,5,7,3',4',5'-hexamethoxyflavone
Catalog No.:BCN1506
CAS No.:202846-95-5
- 4-Benzyloxyindole
Catalog No.:BCC8700
CAS No.:20289-26-3
- 7-Benzyloxyindole
Catalog No.:BCC8778
CAS No.:20289-27-4
- glucagon receptor antagonists 3
Catalog No.:BCC1595
CAS No.:202917-17-7
- glucagon receptor antagonists 2
Catalog No.:BCC1594
CAS No.:202917-18-8
- Conantokin-R
Catalog No.:BCC5980
CAS No.:202925-60-8
- NF 340
Catalog No.:BCC7785
CAS No.:202982-98-7
- NF 279
Catalog No.:BCC6964
CAS No.:202983-32-2
- Aporheine
Catalog No.:BCN4802
CAS No.:2030-53-7
- Clofazimine
Catalog No.:BCC4651
CAS No.:2030-63-9
- Saponarin
Catalog No.:BCN2280
CAS No.:20310-89-8
- Solamargine
Catalog No.:BCN2305
CAS No.:20311-51-7
Epigallocatechin gallate, ellagic acid, and rosmarinic acid perturb dNTP pools and inhibit de novo DNA synthesis and proliferation of human HL-60 promyelocytic leukemia cells: Synergism with arabinofuranosylcytosine.[Pubmed:25636891]
Phytomedicine. 2015 Jan 15;22(1):213-22.
Epigallocatechin gallate (EGCG), ellagic acid (EA) and Rosmarinic acid (RA) are natural polyphenols exerting cancer chemopreventive effects. Ribonucleotide reductase (RR; EC 1.17.4.1) converts ribonucleoside diphosphates into deoxyribonucleoside diphosphates being essential for DNA replication, which is why the enzyme is considered an excellent target for anticancer therapy. EGCG, EA, and RA dose-dependently inhibited the growth of human HL-60 promyelocytic leukemia cells, exerted strong free radical scavenging potential, and significantly imbalanced nuclear deoxyribonucleoside triphosphate (dNTP) concentrations without distinctly affecting the protein levels of RR subunits (R1, R2, p53R2). Incorporation of (14)C-cytidine into nascent DNA of tumor cells was also significantly lowered, being equivalent to an inhibition of DNA synthesis. Consequently, treatment with EGCG and RA attenuated cells in the G0/G1 phase of the cell cycle, finally resulting in a pronounced induction of apoptosis. Sequential combination of EA and RA with the first-line antileukemic agent arabinofuranosylcytosine (AraC) synergistically potentiated the antiproliferative effect of AraC, whereas EGCG plus AraC yielded additive effects. Taken together, we show for the first time that EGCG, EA, and RA perturbed dNTP levels and inhibited cell proliferation in human HL-60 promyelocytic leukemia cells, with EGCG and RA causing a pronounced induction of apoptosis. Due to these effects and synergism with AraC, these food ingredients deserve further preclinical and in vivo testing as inhibitors of leukemic cell proliferation.
Antiallergic activity of rosmarinic acid esters is modulated by hydrophobicity, and bulkiness of alkyl side chain.[Pubmed:25686361]
Biosci Biotechnol Biochem. 2015;79(7):1178-82.
Methyl, propyl and hexyl esters of rosmarinic, caffeic and p-coumaric acids were tested for antiallergic activity, and Rosmarinic acid propyl ester exhibited the greatest beta-hexosaminidase release suppression (IC50, 23.7 muM). Quadratic correlations between pIC50 and cLogP (r(2) = 0.94, 0.98, and 1.00, respectively) were observed in each acid ester series. The antiallergic activity is modulated by hydrophobicity, and alkyl chain bulkiness.
Rosmarinic acid modulates the antioxidant status and protects pancreatic tissues from glucolipotoxicity mediated oxidative stress in high-fat diet: streptozotocin-induced diabetic rats.[Pubmed:25735949]
Mol Cell Biochem. 2015 Jun;404(1-2):143-59.
Persistent hyperglycemia and elevated levels of free fatty acids (FFA) contribute to oxidative stress, a proximate cause for the onset and progression of diabetes and its complications. The present study was hypothesized to evaluate the anti-diabetic potential of Rosmarinic acid (RA) during high-fat diet (HFD)-streptozotocin (STZ)-induced type 2 Diabetes (T2D) in wistar albino rats. Oral administration of RA (100 mg/kg b.w) significantly (p < 0.05) increased the insulin sensitivity index (ISI0,120), while the levels of blood glucose, HbA1c, advanced glycation end products (AGE), TNF-alpha, IL-1beta, IL 6, NO, p-JNK, P38 MAPK and NF-kappaB were significantly reduced, with a concomitant elevation in the plasma insulin levels in diabetic rats. Furthermore, RA treatment significantly (p < 0.05) reduced the levels of triglycerides, FFA and cholesterol in serum, and reduced the levels of lipid peroxides, AOPP's and protein carbonyls in the plasma and pancreas of diabetic rats. The diminished activities of pancreatic superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione-S-transferase (GST) and the decreased levels of plasma ceruloplasmin, vitamin C, vitamin E and reduced glutathione (GSH) in diabetic rats were also significantly (p < 0.05) recovered upon RA treatment denoting its antioxidant potential which was confirmed by Nrf-2, hemeoxyenase (HO-1) levels. Histological, ultrastructural and immunohistochemical data demonstrate that oral administration of RA protects pancreatic beta-cells from oxidative niche in HFD-STZ-induced experimental diabetes. Our findings suggest that the oral treatment with RA alleviates pancreatic beta-cell dysfunction and glucolipotoxicity-mediated oxidative stress during HFD-STZ-induced T2DM, perhaps through its antioxidant potential.
Antiepileptogenic, antioxidant and genotoxic evaluation of rosmarinic acid and its metabolite caffeic acid in mice.[Pubmed:25498895]
Life Sci. 2015 Feb 1;122:65-71.
AIMS: Antioxidant compounds have been extensively investigated as a pharmacological alternatives to prevent epileptogenesis. Rosmarinic acid (RA) and caffeic acid (CA) are compounds with antioxidant properties, and RA has been shown to inhibit GABA transaminase activity (in vitro). Our aim was to evaluate the effect of RA and CA on seizures induced by pentylenotetrazole (PTZ) using the kindling model in mice. MAIN METHODS: Male CF-1 mice were treated once every three days during 16days with RA (1, 2 or 4mg/kg; i.p.), or CA (1, 4 or 8mg/kg; i.p.), or positive controls diazepam (1mg/kg; i.p.) or vigabatrin (600mg/kg; p.o.), 30min before PTZ administration (50mg/kg; s.c.). After the last treatment, animals were sacrificed and the cortex was collected to evaluate free radicals (determined by 2',7'-dichlorofluorescein diacetate probe), superoxide dismutase (SOD) and genotoxic activity (Alkaline Comet Assay). KEY FINDINGS: Rosmarinic acid 2mg/kg increased latency and decreased percentage of seizures, only on the 4th day of observation. The other tested doses of RA and CA did not show any effect. Rosmarinic acid 1mg/kg, CA 4mg/kg and CA 8mg/kg decreased free radicals, but no dose altered the levels of enzyme SOD. In the comet assay, RA 4mg/kg and CA 4mg/kg reduced the DNA damage index. SIGNIFICANCE: Some doses of Rosmarinic acid and CA tested showed neuroprotective action against oxidative and DNA damage produced in the kindling epilepsy model, although they did not produce antiepileptogenic effect in vivo.
Multiple tyrosine metabolites are GPR35 agonists.[Pubmed:22523636]
Sci Rep. 2012;2:373.
Both kynurenic acid and 2-acyl lysophosphatidic acid have been postulated to be the endogenous agonists of GPR35. However, controversy remains whether alternative endogenous agonists exist. The molecular targets accounted for many nongenomic actions of thyroid hormones are mostly unknown. Here we report the agonist activity of multiple tyrosine metabolites at the GPR35. Tyrosine metabolism intermediates that contain carboxylic acid and/or catechol functional groups were first selected. Whole cell dynamic mass redistribution (DMR) assays enabled by label-free optical biosensor were then used to characterize their agonist activity in native HT-29. Molecular assays including beta-arrestin translocation, ERK phosphorylation and receptor internalization confirmed that GPR35 functions as a receptor for 5,6-dihydroxyindole-2-carboxylic acid, 3,3',5'-triiodothyronine, 3,3',5-triiodothyronine, gentisate, rosmarinate, and 3-nitrotyrosine. These results suggest that multiple tyrosine metabolites are alternative endogenous ligands of GPR35, and GPR35 may represent a druggable target for treating certain diseases associated with abnormality of tyrosine metabolism.
Inhibition of complement by covalent attachment of rosmarinic acid to activated C3b.[Pubmed:10353266]
Biochem Pharmacol. 1999 Jun 15;57(12):1439-46.
Rosmarinic acid has been reported to inhibit complement activation in vivo as well as in vitro. Previous studies suggested that the inhibitory effect was due to inhibition of C3/C5 convertases, but inhibition of C3b attachment would yield the same results. Recent work in our laboratory demonstrated that compounds with polyhydroxylated phenyl rings are highly reactive with the thioester bond in nascent C3b. These compounds block complement activation by preventing attachment of C3b to the activating surface. Because Rosmarinic acid contains two 3,4-dihydroxyphenyl groups, the current study was undertaken to re-examine the mechanism of inhibition by analyzing the effect of Rosmarinic acid on C3b attachment. In assays using purified complement proteins, Rosmarinic acid inhibited covalent attachment of C3b to cells with an 1C50 = 34 microM. Inhibition of C5 convertase activity required 1500 microM Rosmarinic acid, and no significant inhibition of the C3 convertase enzyme, which produces C3b from C3, was observed at 10,000 microM. In hemolytic assays using human serum, Rosmarinic acid was shown to inhibit activation of both the classical (IC50 = 180 microM) and the alternative (IC50 = 160 microM) pathways of complement. Rosmarinic acid concentrations up to 10,000 microM did not cause direct inactivation of C3. Radioiodination of Rosmarinic acid was used to demonstrate covalent activation-dependent incorporation of Rosmarinic acid specifically into the thioester-containing alpha'-chain of nascent C3b. These findings indicate that inhibition of complement activation by Rosmarinic acid is due to the reaction of Rosmarinic acid with the activated thioester of metastable C3b, resulting in covalent attachment of the inhibitor to the protein.
Modification of endotoxin-induced haemodynamic and haematological changes in the rabbit by methylprednisolone, F(ab')2 fragments and rosmarinic acid.[Pubmed:3838489]
Br J Pharmacol. 1985 Feb;84(2):317-27.
The effects of methylprednisolone, F(ab')2 fragments of human gamma globulins and Rosmarinic acid, an inhibitor of complement activation, were tested on endotoxin-induced haemodynamic and haematological changes in the rabbit. Their effects were compared with complement depletion by cobra venom factor (CVF) pretreatment. The results provide further evidence for the role of complement activation and the concomitant triggering of the arachidonic acid cascade in the early phase of shock. The formation of vasoactive prostanoids (prostacyclin and thromboxane A2), the arterial hypotension and the thrombocytopenia were largely dependent on the presence of the intact complement system. F(ab')2 fragments (150 mg kg-1, i.v.) diminished the second fall in blood pressure to some extent but failed to alter any of the other endotoxin-induced changes. Methylprednisolone (40 mg kg-1, i.v.) given 10 min before endotoxin significantly reduced the activation of complement, the second rise of prostacyclin and the secondary hypotension, but was without effect on the early thromboxane peak of the haematological features of endotoxin shock. Rosmarinic acid (20 mg kg-1, i.v.) may be of potential interest for treatment of septic shock, since the drug suppressed the endotoxin-induced activation of complement, the formation of prostacyclin, both hypotensive phases, the thrombocytopenia and the concomitant release of thromboxane A2. The role of leukocytes and their arachidonic acid metabolites in plasma exudation deserves further investigation, because leukopenia and pulmonary oedema were not complement-dependent and were not affected by any of the treatments. Our results indicate that drugs, interfering with complement activation and/or prostaglandin biosynthesis, may be beneficial in endotoxin shock, provided that they are administered at an early stage.