T 0156 hydrochlorideHighly potent, selective PDE5 inhibitor CAS# 324572-93-2 |
2D Structure
- StemRegenin 1 (SR1)
Catalog No.:BCC3637
CAS No.:1227633-49-9
Quality Control & MSDS
3D structure
Package In Stock
Number of papers citing our products
Cas No. | 324572-93-2 | SDF | Download SDF |
PubChem ID | 9852041 | Appearance | Powder |
Formula | C31H30ClN5O7 | M.Wt | 620.06 |
Type of Compound | N/A | Storage | Desiccate at -20°C |
Solubility | Soluble to 25 mM in ethanol with gentle warming and to 25 mM in DMSO with gentle warming | ||
Chemical Name | methyl 2-[(2-methylpyridin-4-yl)methyl]-1-oxo-8-(pyrimidin-2-ylmethoxy)-4-(3,4,5-trimethoxyphenyl)-2,7-naphthyridine-3-carboxylate;hydrochloride | ||
SMILES | CC1=NC=CC(=C1)CN2C(=C(C3=C(C2=O)C(=NC=C3)OCC4=NC=CC=N4)C5=CC(=C(C(=C5)OC)OC)OC)C(=O)OC.Cl | ||
Standard InChIKey | RBJCBXAXUHCWBR-UHFFFAOYSA-N | ||
Standard InChI | InChI=1S/C31H29N5O7.ClH/c1-18-13-19(7-11-32-18)16-36-27(31(38)42-5)25(20-14-22(39-2)28(41-4)23(15-20)40-3)21-8-12-35-29(26(21)30(36)37)43-17-24-33-9-6-10-34-24;/h6-15H,16-17H2,1-5H3;1H | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Description | Potent and selective inhibitor of phosphodiesterase type 5 (PDE5); more selective than sildenafil (IC50 values are 0.23, 56 and > 63000 nM for T 0156 and 3.6, 29 and > 270 nM for sildenafil at PDE5, PDE6 and PDEs 1 - 4 respectively). Selective over 30 other enzymes and receptors (IC50 > 10 mM) and potentiates electrical field stimulation-induced relaxation of isolated rabbit corpus cavernosum. Active in vivo. |
T 0156 hydrochloride Dilution Calculator
T 0156 hydrochloride Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 1.6127 mL | 8.0637 mL | 16.1275 mL | 32.2549 mL | 40.3187 mL |
5 mM | 0.3225 mL | 1.6127 mL | 3.2255 mL | 6.451 mL | 8.0637 mL |
10 mM | 0.1613 mL | 0.8064 mL | 1.6127 mL | 3.2255 mL | 4.0319 mL |
50 mM | 0.0323 mL | 0.1613 mL | 0.3225 mL | 0.6451 mL | 0.8064 mL |
100 mM | 0.0161 mL | 0.0806 mL | 0.1613 mL | 0.3225 mL | 0.4032 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- 1-Indanamine hydrochloride
Catalog No.:BCC8467
CAS No.:32457-23-1
- NPS-2143 hydrochloride
Catalog No.:BCC1808
CAS No.:324523-20-8
- Isochlorogenic acid
Catalog No.:BCN5910
CAS No.:534-61-2
- 20(29)-Lupene-3,23-diol
Catalog No.:BCN5242
CAS No.:32451-85-7
- Khasianine
Catalog No.:BCN2530
CAS No.:32449-98-2
- H-D-Cys-OH.H2O.HCl
Catalog No.:BCC2913
CAS No.:32443-99-5
- Isofebrifugine
Catalog No.:BCN3270
CAS No.:32434-44-9
- Vitexin-4'-Rhamnoside(Rg)
Catalog No.:BCC8369
CAS No.:32426-34-9
- AKTide-2T
Catalog No.:BCC5908
CAS No.:324029-01-8
- Dexfenfluramine hydrochloride
Catalog No.:BCC5927
CAS No.:3239-45-0
- Imetit dihydrobromide
Catalog No.:BCC6768
CAS No.:32385-58-3
- Medicarpin
Catalog No.:BCN5241
CAS No.:32383-76-9
- Periplocymarin
Catalog No.:BCN8485
CAS No.:32476-67-8
- Myricanone
Catalog No.:BCN5243
CAS No.:32492-74-3
- Isorhapotogenin
Catalog No.:BCN3383
CAS No.:32507-66-7
- Ergosta-7,22-dien-3-one
Catalog No.:BCN7088
CAS No.:32507-77-0
- Sulfo-NHS-SS-Biotin
Catalog No.:BCC3580
CAS No.:325143-98-4
- ICA 110381
Catalog No.:BCC6338
CAS No.:325457-99-6
- 1-Oleoyl lysophosphatidic acid sodium salt
Catalog No.:BCC7792
CAS No.:325465-93-8
- Ascleposide E
Catalog No.:BCN5244
CAS No.:325686-49-5
- Indiplon
Catalog No.:BCC7720
CAS No.:325715-02-4
- BPIPP
Catalog No.:BCC7730
CAS No.:325746-94-9
- GRI 977143
Catalog No.:BCC2401
CAS No.:325850-81-5
- Kaempferol 3-neohesperidoside
Catalog No.:BCN5245
CAS No.:32602-81-6
T-0156, a novel phosphodiesterase type 5 inhibitor, and sildenafil have different pharmacological effects on penile tumescence and electroretinogram in dogs.[Pubmed:14757152]
Eur J Pharmacol. 2004 Feb 6;485(1-3):283-8.
T-0156 (2-(2-methylpyridin-4-yl)methyl-4-(3,4,5-trimethoxyphenyl)-8-(pyrimidin-2-yl)meth oxy-1,2-dihydro-1-oxo-2,7-naphthyridine-3-carboxylic acid methyl ester hydrochloride) is a newly synthesized phosphodiesterase type 5 inhibitor, and its potency and selectivity are higher than those of sildenafil in an enzyme assay. In the present study with anesthetized dogs, we examined the effects of intravenous T-0156 or sildenafil on the pelvic nerve stimulation-induced penile tumescence and light-adapted flicker stimulation-induced electroretinogram, parameters of which are reported to be indicators for inhibition of phosphodiesterase type 5 and type 6, respectively. Both compounds potentiated the penile tumescence in a dose-dependent manner. T-0156 at 10 microg/kg and sildenafil at 100 microg/kg showed almost the same potentiating percentage (181.5+/-31.1% and 190.0+/-37.9%) in spite of the plasma concentration of T-0156 being about five times lower than that of sildenafil (16.7+/-1.6 and 78.8+/-5.3 ng/ml), indicating that the effect of T-0156 on tumescence is more potent than that of sildenafil. While the high dose of T-0156 (1000 microg/kg) reduced the amplitude and increased the latency of the electroretinogram positive wave, the effects of T-0156 were conversely weaker than those of sildenafil (reduction of amplitude; T-0156: 41.1+/-8.0%, sildenafil: 71.7+/-3.9%, increase of latency; T-0156: 3.9+/-0.6%, sildenafil: 14.5+/-1.4%, at 1000 microg/kg). These results clearly showed the difference in the properties of T-0156 and sildenafil in pharmacological studies with anesthetized dogs, and the difference appeared to correspond with their inhibitory potencies for phosphodiesterase type 5 and type 6. It was concluded that T-0156 would be a useful pharmacological tool as a potent and highly selective phosphodiesterase type 5 inhibitor.
Enzymological and pharmacological profile of T-0156, a potent and selective phosphodiesterase type 5 inhibitor.[Pubmed:12450574]
Eur J Pharmacol. 2002 Dec 5;456(1-3):91-8.
The enzymological and pharmacological properties of 2-(2-Methylpyridin-4-yl)methyl-4-(3,4,5-trimethoxyphenyl)-8-(pyrimidin-2-yl)metho xy-1,2-dihydro-1-oxo-2,7-naphthyridine-3-carboxylic acid methyl ester hydrochloride (T-0156), a new phosphodiesterase type 5 inhibitor, were studied in vitro and in vivo. The inhibitory effects of T-0156 on six phosphodiesterase isozymes isolated from canine tissues were investigated. T-0156 specifically inhibited the hydrolysis of cyclic guanosine monophosphate (cGMP) by phosphodiesterase type 5, at low concentration (IC(50)=0.23 nM), in a competitive manner. T-0156 also inhibited phosphodiesterase type 6 with IC(50) value of 56 nM, which was 240-fold higher than that for inhibition of phosphodiesterase type 5. T-0156 had low potencies against phosphodiesterase types 1, 2, 3, and 4 (IC(50)>10 microM). In the isolated rabbit corpus cavernosum, T-0156 at 10 and 100 nM increased cGMP levels (100 nM T-0156-treated: 6.0+/-1.5 pmol/mg protein, vehicle-treated: 1.1+/-0.4 pmol/mg protein, P<0.05), causing relaxation of the tissue. T-0156 at 1 to 100 nM potentiated the electrical field stimulation-induced relaxation in the isolated rabbit corpus cavernosum in a concentration-dependent manner (100 nM T-0156-treated: 76.9+/-19.8%, vehicle-treated: 12.3+/-10.1%, P<0.05). Intraduodenal administration of T-0156 at 100 to 1000 microg/kg potentiated the pelvic nerve stimulation-induced tumescence in anesthetized dogs (1000 microg/kg T-0156-treated: 279.0+/-38.4%, vehicle-treated: 9.8+/-4.5%, P<0.05). These results suggested that T-0156 enhanced the nitric oxide (NO)/cGMP pathway, probably through blockade of phosphodiesterase type 5 in vitro and in vivo experimental conditions. The present study clearly showed that T-0156 is a potent and highly selective phosphodiesterase type 5 inhibitor, which is a useful tool for pharmacological studies in vitro and in vivo.