Tanshinol B

CAS# 189290-30-0

Tanshinol B

Catalog No. BCX0303----Order now to get a substantial discount!

Product Name & Size Price Stock
Tanshinol B: 5mg $828 In Stock
Tanshinol B: 10mg Please Inquire In Stock
Tanshinol B: 20mg Please Inquire Please Inquire
Tanshinol B: 50mg Please Inquire Please Inquire
Tanshinol B: 100mg Please Inquire Please Inquire
Tanshinol B: 200mg Please Inquire Please Inquire
Tanshinol B: 500mg Please Inquire Please Inquire
Tanshinol B: 1000mg Please Inquire Please Inquire
Related Products

Quality Control of Tanshinol B

Number of papers citing our products

Chemical structure

Tanshinol B

3D structure

Chemical Properties of Tanshinol B

Cas No. 189290-30-0 SDF Download SDF
PubChem ID 126071 Appearance Red powder
Formula C18H16O4 M.Wt 296.3
Type of Compound Other Quinones Storage Desiccate at -20°C
Solubility Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc.
Chemical Name 6-hydroxy-1,6-dimethyl-8,9-dihydro-7H-naphtho[1,2-g][1]benzofuran-10,11-dione
SMILES CC1=COC2=C1C(=O)C(=O)C3=C2C=CC4=C3CCCC4(C)O
Standard InChIKey JVRKHBLVECIWMZ-UHFFFAOYSA-N
Standard InChI InChI=1S/C18H16O4/c1-9-8-22-17-11-5-6-12-10(4-3-7-18(12,2)21)14(11)16(20)15(19)13(9)17/h5-6,8,21H,3-4,7H2,1-2H3
General tips For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months.
We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months.
Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it.
About Packaging 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial.
2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial.
3. Try to avoid loss or contamination during the experiment.
Shipping Condition Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request.

Tanshinol B Dilution Calculator

Concentration (start)
x
Volume (start)
=
Concentration (final)
x
Volume (final)
 
 
 
C1
V1
C2
V2

calculate

Tanshinol B Molarity Calculator

Mass
=
Concentration
x
Volume
x
MW*
 
 
 
g/mol

calculate

Preparing Stock Solutions of Tanshinol B

1 mg 5 mg 10 mg 20 mg 25 mg
1 mM 3.375 mL 16.8748 mL 33.7496 mL 67.4992 mL 84.3739 mL
5 mM 0.675 mL 3.375 mL 6.7499 mL 13.4998 mL 16.8748 mL
10 mM 0.3375 mL 1.6875 mL 3.375 mL 6.7499 mL 8.4374 mL
50 mM 0.0675 mL 0.3375 mL 0.675 mL 1.35 mL 1.6875 mL
100 mM 0.0337 mL 0.1687 mL 0.3375 mL 0.675 mL 0.8437 mL
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations.

Organizitions Citing Our Products recently

 
 
 

Calcutta University

University of Minnesota

University of Maryland School of Medicine

University of Illinois at Chicago

The Ohio State University

University of Zurich

Harvard University

Colorado State University

Auburn University

Yale University

Worcester Polytechnic Institute

Washington State University

Stanford University

University of Leipzig

Universidade da Beira Interior

The Institute of Cancer Research

Heidelberg University

University of Amsterdam

University of Auckland
TsingHua University
TsingHua University
The University of Michigan
The University of Michigan
Miami University
Miami University
DRURY University
DRURY University
Jilin University
Jilin University
Fudan University
Fudan University
Wuhan University
Wuhan University
Sun Yat-sen University
Sun Yat-sen University
Universite de Paris
Universite de Paris
Deemed University
Deemed University
Auckland University
Auckland University
The University of Tokyo
The University of Tokyo
Korea University
Korea University
Featured Products
New Products
 

References on Tanshinol B

Penthorum chinense Pursh leaf tea debittering mechanisms via green tea manufacturing process and its influence on NAFLD-alleviation activities.[Pubmed:38382251]

Food Chem. 2024 Jul 1;445:138715.

The green-tea manufacturing process showed good effect of flavor improving, debittering and shaping in making Penthorum chinensePursh leaf (PL) tea (PLT), which serves as a polyphenol dietary supplement and beverage raw material. GC-MS results showed that its unpleasant grassy odor decreased by 42.8% due to dodecanal, geranylacetone, and (E)-2-nonenal reduction, coupled with 1-hexadecanol increasing. UPLC-ESI-TOF-MS identified 95 compounds and showed that the debittering effect of green-tea manufacturing process was attributed to decreasing of flavonols and lignans, especially quercetins, kaempferols and luteolins, and increasing of dihydrochalcones which act as sweeteners bitterness-masking agents, while astringency was weakened by reducing delphinidin-3,5-O-diglucoside chloride, kaempferol-7-O-beta-d-glucopyranoside, and tannins. The increase of pinocembrins and catechins in aqueous extracts of PLT, maintained its hepatoprotective, NAFLD-alleviation, and hepatofibrosis-prevention activities similar to PL in high fat-diet C57BL/6 mice, with flavonoids, tannins, tannic acids, and some newfound chemicals, including norbergenin, gomisin K2, pseudolaric acid B, Tanshinol B, as functional ingredients.

Mechanism of Salvia miltiorrhiza Bge. for the Treatment of Ischemic Stroke Based on Bioinformatics and Network Pharmacology.[Pubmed:36133785]

Evid Based Complement Alternat Med. 2022 Sep 12;2022:1767421.

METHODS: In this study, SymMap was used to screen the 50 bioactive scored components and 65 putative targets of Salvia miltiorrhiza Bge., and their targets were standardized using the UniProt platform. The disease targets related to stroke were collected by comparative toxicogenomics database (CTD), GeneCards, and quantitative structure-activity relationships-TargetNet (QSAR-TargetNet). Thereafter, the protein-protein interaction (PPI) network was constructed using the STRING platform and visualized by Cytoscape (3.8.2) software. Then, the Metascape platform was used to analyze the Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway. Cytoscape (3.7.2) software was also used to construct the network of the "herb-component-target-pathway." We found that Tanshinol B, Tanshinol A, Przewaquinone C, Tanshinone II, and other main components of Salvia miltiorrhiza Bge. may regulate neurotransmitters and neurological function. Therefore, we speculate Salvia miltiorrhiza Bge. has a neuroprotective effect. For further verification, potential core targets (STAT3, MMP2, ESR1, TERT, and MMP9 proteins) for ischemic stroke and core active ingredients (Tanshinol A, Tanshinol B, Tanshinone II A, and Przewaquinone C) for Salvia miltiorrhiza Bge. were further verified by molecular docking. RESULTS: Our findings revealed that Tanshinol A, Tanshinol B, Tanshinone II A, and Przewaquinone C as the main component of Salvia miltiorrhiza Bge. may have a neuroprotective effect against ischemic stroke, which provides a new understanding for the development of therapies for the prevention and treatment of ischemic stroke.

In silico screening-based discovery of inhibitors against glycosylation proteins dysregulated in cancer.[Pubmed:34989310]

J Biomol Struct Dyn. 2023 Mar;41(5):1540-1552.

Targeting enzymes associated with the biosynthesis of aberrant glycans is an under-utilized strategy in discovering potential inhibitors or drugs against cancer. The formation of cancer-associated glycans is mainly due to the dysregulated expression of glycosyltransferases and glycosidases, which play crucial roles in maintaining cellular structure and function. We screened a database of more than 14,000 compounds consisting of natural products and drugs for inhibition against four glycosylation enzymes - Alpha1-6FucT, ST6Gal1, ERMan1, and GlcNAcT-V. The top inhibitors identified against each enzyme were subsequently analyzed for potential binding against all four enzymes. In silico screening results show several promising candidates that could potentially inhibit all four enzymes: (1) Amb20622156 (demethylwedelolactone) [ERMan1: -9.3 kcal/mol; Alpha1-6FucT: -7.3 kcal/mol; ST6Gal1: -8.4 kcal/mol; GlcNAcT-V: -7.2 kcal/mol], (2) Amb22173588 (1,2-dihydrotanshinone I) [ERMan1: -9.3 kcal/mol; Alpha1-6FucT: -6.1 kcal/mol; ST6Gal1: -9.2 kcal/mol; GlcNAcT-V: -7.9 kcal/mol], and (3) Amb22173591 (Tanshinol B) [ERMan1: -9.3 kcal/mol; Alpha1-6FucT: -6.0 kcal/mol; ST6Gal1: -9.8 kcal/mol; GlcNAcT-V: -7.7 kcal/mol]. Drug-enzyme active site residue interaction analyses show that the putative inhibitors form non-covalent bonding interactions with key active site residues in each enzyme, suggesting critical target residues in the four enzymes' active sites. Furthermore, pharmacokinetic property prediction analysis using pkCSM indicates that all of these inhibitors have good ADMETox properties (i.e., log P < 5, Caco-2 permeability > 0.90, intestinal absorption > 30%, skin permeability>-2.5, CNS permeability <-3, maximum tolerated dose < 0.477, minnow toxicity<-0.3). The in silico docking approach to glycosylation enzyme inhibitor prediction could help guide and streamline the discovery of novel inhibitors against enzymes involved in aberrant protein glycosylation.Communicated by Ramaswamy H. Sarma.

Computer-based identification of potential compounds from Salviae miltiorrhizae against Neirisaral adhesion A regulatory protein.[Pubmed:33289608]

J Biomol Struct Dyn. 2022 Jul;40(10):4301-4313.

In silico studies are attracting considerable interest due to their ability to understand protein-ligand interactions at the atomic level. The main principal tools of this in silico analyses are molecular docking and molecular dynamic (MD) simulation. This paper examines how can natural compounds that are derived from Salviae miltiorrhizae to block Neisseria adhesion A Regulatory protein (NadR). In molecular docking analysis, only four compounds were found in higher binding affinity with NadR among 10 candidates (Tanshinol B, tanshinol A, lithospermic acid and tournefolal were -7.61, -7.56, -8.22 and -7.81 kcal/mol, respectively, compared to -7.23 kcal/mol of native ligand). Absorption, distribution, metabolism, excretion (ADME) and toxicity properties, medicinal chemistry profile, and physicochemical features were displayed that tournefolal contains good properties to work as a safe and good anti-adhesive drug. Therefore, the complexes of these four ligands with NadR protein were subjected to 100 ns of MD simulation. RMSD, RMSF, RG and hydrogen bonding exhibited that tournefolal showed stable binding affinity and molecular interaction with NadR protein. In light of these results, there is now a need to conduct much more in vitro and in vivo studies about the efficacy of tournefolal.Communicated by Ramaswamy H. Sarma.

A novel compound DBZ ameliorates neuroinflammation in LPS-stimulated microglia and ischemic stroke rats: Role of Akt(Ser473)/GSK3beta(Ser9)-mediated Nrf2 activation.[Pubmed:32863210]

Redox Biol. 2020 Sep;36:101644.

Microglia-mediated neuroinflammation plays a crucial role in the pathophysiological process of multiple neurological disorders such as ischemic stroke, yet lacks effective therapeutic agents. Previously, we discovered one novel synthetic compound, Tanshinol Borneol ester (DBZ), possesses anti-inflammatory and anti-atherosclerotic activities, whereas little is known about its effects in CNS. Therefore, the present study aims to explore the effects and potential mechanism of DBZ on neuroinflammation and microglial function. Our studies revealed that DBZ significantly inhibited NF-kappaB activity, suppressed the production of pro-inflammatory mediators meanwhile promoted M2 mediators expression in LPS-stimulated BV2 cells and mouse primary microglia cells. DBZ also exhibited antioxidant activity by enhancing Nrf2 nuclear accumulation and transcriptional activity, increasing HO-1 and NQO1 expression, and inhibiting LPS-induced ROS generation in BV2 cells. Importantly, the anti-neuroinflammatory and antioxidant effects of DBZ above were reversed by Nrf2 knockdown. Additionally, DBZ ameliorated sickness behaviors of neuroinflammatory mice induced by systemic LPS administration, and significantly reduced infract volume, improved sensorimotor and cognitive function in rats subjected to transient middle cerebral artery occlusion (tMCAO); besides, DBZ restored microglia morphological alterations and shifted the M1/M2 polarization in both murine models. Mechanistically, DBZ-induced Nrf2 nuclear accumulation and antioxidant enzymes expression were accompanied by increased level of p-Akt(Ser473) (activation) and p-GSK3beta(Ser9) (inactivation), and decreased nuclear level of Fyn both in vitro and in vivo. Pharmacologically inhibiting PI3K or activating GSK3beta markedly increased nuclear density of Fyn in microglia cells, which blocked the promoting effect of DBZ on Nrf2 nuclear accumulation and its antioxidant and anti-neuroinflammatory activities. Collectively, these results indicated the effects of DBZ on microglia-mediated neuroinflammation were strongly associated with the nuclear accumulation and stabilization of Nrf2 via the Akt(Ser473)/GSK3beta(Ser9)/Fyn pathway. With anti-neuroinflammatory and antioxidant properties, DBZ could be a promising new drug candidate for prevention and/or treatment of cerebral ischemia and other neuroinflammatory disorders.

Keywords:

Tanshinol B,189290-30-0,Natural Products, buy Tanshinol B , Tanshinol B supplier , purchase Tanshinol B , Tanshinol B cost , Tanshinol B manufacturer , order Tanshinol B , high purity Tanshinol B

Online Inquiry for:

      Fill out the information below

      • Size:Qty: - +

      * Required Fields

                                      Result: