VerbasosideCAS# 61548-34-3 |
2D Structure
Quality Control & MSDS
3D structure
Package In Stock
Number of papers citing our products
Cas No. | 61548-34-3 | SDF | Download SDF |
PubChem ID | 11754080 | Appearance | Powder |
Formula | C20H30O12 | M.Wt | 462.5 |
Type of Compound | Phenylpropanoids | Storage | Desiccate at -20°C |
Solubility | Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc. | ||
Chemical Name | (2S,3R,4R,5R,6S)-2-[(2R,3R,4S,5R,6R)-2-[2-(3,4-dihydroxyphenyl)ethoxy]-3,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-6-methyloxane-3,4,5-triol | ||
SMILES | CC1C(C(C(C(O1)OC2C(C(OC(C2O)OCCC3=CC(=C(C=C3)O)O)CO)O)O)O)O | ||
Standard InChIKey | DORPKYRPJIIARM-GYAWPQPFSA-N | ||
Standard InChI | InChI=1S/C20H30O12/c1-8-13(24)15(26)16(27)20(30-8)32-18-14(25)12(7-21)31-19(17(18)28)29-5-4-9-2-3-10(22)11(23)6-9/h2-3,6,8,12-28H,4-5,7H2,1H3/t8-,12+,13-,14+,15+,16+,17+,18-,19+,20-/m0/s1 | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Description | Verbasoside is a phenolic compound from lemon verbena. |
In vitro | Is Gamma Radiation Suitable to Preserve Phenolic Compounds and to Decontaminate Mycotoxins in Aromatic Plants? A Case-Study with Aloysia citrodora Paláu.[Pubmed: 28241497]Molecules. 2017 Feb 23;22(3). pii: E347.This study aimed to determine the effect of gamma radiation on the preservation of phenolic compounds and on decontamination of dry herbs in terms of ochratoxin A (OTA) and aflatoxin B1 (AFB1), using Aloysia citrodora Paláu as a case study. |
Structure Identification | J Chromatogr A. 2009 Jul 10;1216(28):5391-7.High-performance liquid chromatography with diode array detection coupled to electrospray time-of-flight and ion-trap tandem mass spectrometry to identify phenolic compounds from a lemon verbena extract.[Pubmed: 19500792 ]High-performance liquid chromatography with diode array and electrospray ionization mass spectrometric detection was used to carry out the comprehensive characterization of a lemon verbena extract with demonstrated antioxidant and antiinflammatory activity. |
Verbasoside Dilution Calculator
Verbasoside Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 2.1622 mL | 10.8108 mL | 21.6216 mL | 43.2432 mL | 54.0541 mL |
5 mM | 0.4324 mL | 2.1622 mL | 4.3243 mL | 8.6486 mL | 10.8108 mL |
10 mM | 0.2162 mL | 1.0811 mL | 2.1622 mL | 4.3243 mL | 5.4054 mL |
50 mM | 0.0432 mL | 0.2162 mL | 0.4324 mL | 0.8649 mL | 1.0811 mL |
100 mM | 0.0216 mL | 0.1081 mL | 0.2162 mL | 0.4324 mL | 0.5405 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- Oxytetracycline Dihydrate
Catalog No.:BCC4820
CAS No.:6153-64-6
- (+)-Nortrachelogenin
Catalog No.:BCN7020
CAS No.:61521-74-2
- Quercetin Dihydrate
Catalog No.:BCN2967
CAS No.:6151-25-3
- alpha-Mangostin
Catalog No.:BCN4138
CAS No.:6147-11-1
- Lup-20(29)-ene-2alpha,3beta-diol
Catalog No.:BCN4612
CAS No.:61448-03-1
- CIS-Resveratrol
Catalog No.:BCC8150
CAS No.:61434-67-1
- Bisabola-3,10-dien-2-one
Catalog No.:BCN7510
CAS No.:61432-71-1
- Z-D-Ala-ol
Catalog No.:BCC2589
CAS No.:61425-27-2
- 2-Amino-3-Formylchromone
Catalog No.:BCC8526
CAS No.:61424-76-8
- Carmofur
Catalog No.:BCC1214
CAS No.:61422-45-5
- Rolipram
Catalog No.:BCC2282
CAS No.:61413-54-5
- 2,4-Dihydroxyphenylacetic acid
Catalog No.:BCN4139
CAS No.:614-82-4
- L-Rhamnose
Catalog No.:BCN6302
CAS No.:6155-35-7
- Acetylatractylodinol
Catalog No.:BCN8111
CAS No.:61582-39-6
- DHBP dibromide
Catalog No.:BCC6811
CAS No.:6159-05-3
- Vasicine
Catalog No.:BCN4140
CAS No.:6159-55-3
- 15,16-Epoxy-12R-hydroxylabda-8(17),13(16),14-triene
Catalog No.:BCN1400
CAS No.:61597-55-5
- 13-Hydroxy-8,11,13-podocarpatrien-18-oic acid
Catalog No.:BCN1399
CAS No.:61597-83-9
- H-DL-Nle-OH
Catalog No.:BCC3301
CAS No.:616-06-8
- Acetylcysteine
Catalog No.:BCC3716
CAS No.:616-91-1
- (-)-Sparteine Sulfate Pentahydrate
Catalog No.:BCC8273
CAS No.:6160-12-9
- Songoroside A
Catalog No.:BCN3988
CAS No.:61617-29-6
- Amfenac Sodium Monohydrate
Catalog No.:BCC4620
CAS No.:61618-27-7
- Protopine hydrochloride
Catalog No.:BCN5345
CAS No.:6164-47-2
High-performance liquid chromatography with diode array detection coupled to electrospray time-of-flight and ion-trap tandem mass spectrometry to identify phenolic compounds from a lemon verbena extract.[Pubmed:19500792]
J Chromatogr A. 2009 Jul 10;1216(28):5391-7.
High-performance liquid chromatography with diode array and electrospray ionization mass spectrometric detection was used to carry out the comprehensive characterization of a lemon verbena extract with demonstrated antioxidant and antiinflammatory activity. Two different MS techniques have been coupled to HPLC: on one hand, time-of-flight mass spectrometry, and on the other hand, tandem mass spectrometry on an ion-trap. The use of a small particle size C18 column (1.8 microm) provided a great resolution and made possible the separation of several isomers. The UV-visible spectrophotometry was used to delimit the class of phenolic compound and the accurate mass measurements on time-of-flight spectrometer enabled to identify the compounds present in the extract. Finally, the fragmentation pattern obtained in MS-MS experiments confirmed the proposed structures. This procedure was able to determine many well-known phenolic compounds present in lemon verbena such as verbascoside and its derivatives, diglucuronide derivatives of apigenin and luteolin, and eukovoside. Also gardoside, Verbasoside, cistanoside F, theveside, campneoside I, chrysoeriol-7-diglucuronide, forsythoside A and acacetin-7-diglucuronide were found for the first time in lemon verbena.
Is Gamma Radiation Suitable to Preserve Phenolic Compounds and to Decontaminate Mycotoxins in Aromatic Plants? A Case-Study with Aloysia citrodora Palau.[Pubmed:28241497]
Molecules. 2017 Feb 23;22(3). pii: molecules22030347.
This study aimed to determine the effect of gamma radiation on the preservation of phenolic compounds and on decontamination of dry herbs in terms of ochratoxin A (OTA) and aflatoxin B1 (AFB1), using Aloysia citrodora Palau as a case study. For this purpose, artificially contaminated dry leaves were submitted to gamma radiation at different doses (1, 5, and 10 kGy; at dose rate of 1.7 kGy/h). Phenolic compounds were analysed by HPLC-DAD-ESI/MS and mycotoxin levels were determined by HPLC-fluorescence. Eleven phenolic compounds were identified in the samples and despite the apparent degradation of some compounds (namely Verbasoside), 1 and 10 kGy doses point to a preservation of the majority of the compounds. The mean mycotoxin reduction varied between 5.3% and 9.6% for OTA and from 4.9% to 5.2% for AFB1. It was not observed a significant effect of the irradiation treatments on mycotoxin levels, and a slight degradation of the phenolic compounds in the irradiated samples was observed.