WarangaloneCAS# 4449-55-2 |
2D Structure
Quality Control & MSDS
3D structure
Package In Stock
Number of papers citing our products
Cas No. | 4449-55-2 | SDF | Download SDF |
PubChem ID | 5379679 | Appearance | Yellow powder |
Formula | C25H24O5 | M.Wt | 404.5 |
Type of Compound | Flavonoids | Storage | Desiccate at -20°C |
Solubility | Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc. | ||
Chemical Name | 5-hydroxy-7-(4-hydroxyphenyl)-2,2-dimethyl-10-(3-methylbut-2-enyl)pyrano[3,2-g]chromen-6-one | ||
SMILES | CC(=CCC1=C2C(=C(C3=C1OC=C(C3=O)C4=CC=C(C=C4)O)O)C=CC(O2)(C)C)C | ||
Standard InChIKey | HGHOPAZIUPORIN-UHFFFAOYSA-N | ||
Standard InChI | InChI=1S/C25H24O5/c1-14(2)5-10-18-23-17(11-12-25(3,4)30-23)21(27)20-22(28)19(13-29-24(18)20)15-6-8-16(26)9-7-15/h5-9,11-13,26-27H,10H2,1-4H3 | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Description | 1. Warangalone shows significant cytotoxicity against HL-60 cells. 2. Warangalone with cAK may contribute to its biological effects in vivo and to the insecticidal activity of the plant D. scandens. 3. Warangalone is a powerful inhibitor of protein kinase A, shows marked effectiveness as an anti-inflammatory on the phospholipase A(2)-induced paw edema and on the 12-O-tetradecanoylphorbol 13-acetate-induced ear edema in mice, after systemic and local administration, respectively. |
Targets | PKC | Calcium Channel | PKA | Caspase |
Warangalone Dilution Calculator
Warangalone Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 2.4722 mL | 12.3609 mL | 24.7219 mL | 49.4438 mL | 61.8047 mL |
5 mM | 0.4944 mL | 2.4722 mL | 4.9444 mL | 9.8888 mL | 12.3609 mL |
10 mM | 0.2472 mL | 1.2361 mL | 2.4722 mL | 4.9444 mL | 6.1805 mL |
50 mM | 0.0494 mL | 0.2472 mL | 0.4944 mL | 0.9889 mL | 1.2361 mL |
100 mM | 0.0247 mL | 0.1236 mL | 0.2472 mL | 0.4944 mL | 0.618 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- Cyclopamine
Catalog No.:BCN2964
CAS No.:4449-51-8
- CMX001
Catalog No.:BCC4106
CAS No.:444805-28-1
- Pazopanib (GW-786034)
Catalog No.:BCC1286
CAS No.:444731-52-6
- Norwogonin
Catalog No.:BCN3190
CAS No.:4443-09-8
- 2-Cyclohexylethylamine
Catalog No.:BCN1794
CAS No.:4442-85-7
- 1,4-Benzodioxane-6-carboxylic acid
Catalog No.:BCC8422
CAS No.:4442-54-0
- Vandetanib (ZD6474)
Catalog No.:BCC3883
CAS No.:443913-73-3
- Glycosmisic acid
Catalog No.:BCN3650
CAS No.:443908-19-8
- Norkhellol
Catalog No.:BCN5497
CAS No.:4439-68-3
- 3-Chloro-4-(3-fluorobenzyloxy)nitrobenzene
Catalog No.:BCC8626
CAS No.:443882-99-3
- JNJ-7706621
Catalog No.:BCC2171
CAS No.:443797-96-4
- BC 11 hydrobromide
Catalog No.:BCC2381
CAS No.:443776-49-6
- AM1241
Catalog No.:BCC2551
CAS No.:444912-48-5
- TC-O 9311
Catalog No.:BCC7900
CAS No.:444932-31-4
- EBPC
Catalog No.:BCC6677
CAS No.:4450-98-0
- 1,4:3,6-Dianhydro-α-D-glucopyranose
Catalog No.:BCC8420
CAS No.:4451-30-3
- ZM 449829
Catalog No.:BCC2444
CAS No.:4452-06-6
- BMS-345541(free base)
Catalog No.:BCC5374
CAS No.:445430-58-0
- SGS 518 oxalate
Catalog No.:BCC7750
CAS No.:445441-27-0
- BMS CCR2 22
Catalog No.:BCC7572
CAS No.:445479-97-0
- Homoeriodictyol
Catalog No.:BCN6804
CAS No.:446-71-9
- Genistein
Catalog No.:BCN5499
CAS No.:446-72-0
- Azathioprine
Catalog No.:BCC4762
CAS No.:446-86-6
- 2,4,5-Trimethoxybenzaldehyde
Catalog No.:BCN5498
CAS No.:4460-86-0
Warangalone, the isoflavonoid anti-inflammatory principle of Erythrina addisoniae stem bark.[Pubmed:12828487]
J Nat Prod. 2003 Jun;66(6):891-3.
The prenylisoflavone Warangalone has been isolated from the bark of Erythrina addisoniae. This compound, previously recognized as a powerful inhibitor of protein kinase A, showed marked effectiveness as an anti-inflammatory on the phospholipase A(2)-induced paw edema and on the 12-O-tetradecanoylphorbol 13-acetate-induced ear edema in mice, after systemic and local administration, respectively.
Induction of apoptosis by isoflavonoids from the leaves of Millettia taiwaniana in human leukemia HL-60 cells.[Pubmed:16557456]
Planta Med. 2006 Apr;72(5):424-9.
We have isolated two new isoflavonoids, millewanin-F (1) and furowanin-A (2), together with five known isoflavonoids from the leaves of Millettia taiwaniana Hayata (Leguminosae) and examined their effects on the growth of human leukemia HL-60 cells. Among the isolated isoflavonoids, furowanin-A (2), Warangalone (3), isoerysenegalensein-E (4), and euchrenone b10 (6) showed significant cytotoxicity against HL-60 cells. After treatment with three of the cytotoxic isoflavonoids, furowanin-A (2), Warangalone (3), and isoerysenegalensein-E (4), fluorescence microscopy with Hoechst 33,342 staining revealed that the percentage of apoptotic cells with fragmented nuclei and condensed chromatin increased in a time-dependent manner. In addition, the activities of caspase-9 and caspase-3 were also enhanced in a time-dependent manner upon treatment with the isoflavonoids 2, 3, and 4. Caspase-9 and caspase-3 inhibitors suppressed apoptosis induced by isoflavonoids 2, 3, and 4. These results suggest that the isoflavonoids induced apoptosis in HL-60 cells through activation of the caspase-9/caspase-3 pathway, which is triggered by mitochondrial dysfunction.
Specific inhibition of cyclic AMP-dependent protein kinase by warangalone and robustic acid.[Pubmed:9115691]
Phytochemistry. 1997 Mar;44(5):787-96.
The prenylated isoflavone Warangalone from the insecticidal plant Derris scandens is a selective and potent inhibitor of rat liver cyclic AMP-dependent protein kinase catalytic subunit (cAK) (IC50 3.5 microM). The inhibition of rat liver cAK by Warangalone is non-competitive with respect to both ATP and the synthetic peptide substrate (LRRASLG) employed in this study. Warangalone is a poor inhibitor of avian calmodulin-dependent myosin light chain kinase (MLCK), rat brain Ca(2+)- and phospholipid-dependent protein kinase C (PKC) and wheat embryo Ca(2+)-dependent protein kinase (CDPK). The related plant derived prenylisoflavones are also potent cAK inhibitors. Thus, 8-gamma-gamma-dimethylallylwighteone, 3' -gamma-gamma-dimethlallylwighteone and nallanin are inhibitors of cAK with IC50 values in the range 20-33 microM. The prenyl-substituted isoflavones tested in this study are ineffective or poor as inhibitors of PKC. Thus nallanin is a poor PKC inhibitor (IC50 value of 120 microM). The related isoflavones biochanin A and genistein are poor inhibitors of cAK (IC50 values 100 microM and 126 microM, respectively). Genistein inhibits MLCK (IC50 value 14 microM) but biochanin A is a poor MLCK inhibitor (IC50 value 300 microM). The D. scandens prenyl-isoflavones and related isoflavones are ineffective inhibitors of wheat embryo Ca(2+)-dependent protein kinase (CDPK). The 4-methoxy-3-phenyl-coumarin robustic acid is a potent inhibitor of rat liver cAK (IC50 value 10 microM) but is a poor inhibitor of rat brain PKC, avian MLCK and wheat embryo CDPK. The coumarins 5-methoxypsoralen and 4,4'-di-O-methyl scandenin are poor cAK inhibitors (IC50 values 240 and 248 microM, respectively). All of the non-prenylated coumarins examined are ineffective as inhibitors of the eukaryote signal-regulated protein kinases cAK, MLCK, PKC and CDPK. The selective, high affinity interaction of Warangalone and robustic acid with cAK may contribute to their biological effects in vivo and to the insecticidal activity of the plant D. scandens.