ZM 449829JAK3 inhibitor CAS# 4452-06-6 |
- MLN8237 (Alisertib)
Catalog No.:BCC2166
CAS No.:1028486-01-2
- VX-680 (MK-0457,Tozasertib)
Catalog No.:BCC2167
CAS No.:639089-54-6
- CYC116
Catalog No.:BCC2181
CAS No.:693228-63-6
- AZD1152
Catalog No.:BCC1393
CAS No.:722543-31-9
- MK-8745
Catalog No.:BCC3994
CAS No.:885325-71-3
- GSK1070916
Catalog No.:BCC2183
CAS No.:942918-07-2
Quality Control & MSDS
Number of papers citing our products
Chemical structure
3D structure
Cas No. | 4452-06-6 | SDF | Download SDF |
PubChem ID | 3799 | Appearance | Powder |
Formula | C13H10O | M.Wt | 182.22 |
Type of Compound | N/A | Storage | Desiccate at -20°C |
Solubility | Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc. | ||
Chemical Name | 1-naphthalen-2-ylprop-2-en-1-one | ||
SMILES | C=CC(=O)C1=CC2=CC=CC=C2C=C1 | ||
Standard InChIKey | FOTCGZPFSUWZBN-UHFFFAOYSA-N | ||
Standard InChI | InChI=1S/C13H10O/c1-2-13(14)12-8-7-10-5-3-4-6-11(10)9-12/h2-9H,1H2 | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Description | Potent, selective inhibitor of Janus tyrosine kinase 3 (JAK3) which binds competitively to the JAK3 ATP site. pIC50 values are 6.8, 5.0, 4.7, and < 5.0 for JAK3, EGFR, JAK1 and CDK4 respectively. Inhibits STAT-5 phosphorylation and T cell proliferation. |
ZM 449829 Dilution Calculator
ZM 449829 Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 5.4879 mL | 27.4394 mL | 54.8787 mL | 109.7574 mL | 137.1968 mL |
5 mM | 1.0976 mL | 5.4879 mL | 10.9757 mL | 21.9515 mL | 27.4394 mL |
10 mM | 0.5488 mL | 2.7439 mL | 5.4879 mL | 10.9757 mL | 13.7197 mL |
50 mM | 0.1098 mL | 0.5488 mL | 1.0976 mL | 2.1951 mL | 2.7439 mL |
100 mM | 0.0549 mL | 0.2744 mL | 0.5488 mL | 1.0976 mL | 1.372 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
Potent, selective inhibitor of Janus tyrosine kinase 3 (JAK3) which binds competitively to the JAK3 ATP site. pIC50 values are 6.8, 5.0, 4.7, and < 5.0 for JAK3, EGFR, JAK1 and CDK4 respectively.
- 1,4:3,6-Dianhydro-α-D-glucopyranose
Catalog No.:BCC8420
CAS No.:4451-30-3
- EBPC
Catalog No.:BCC6677
CAS No.:4450-98-0
- TC-O 9311
Catalog No.:BCC7900
CAS No.:444932-31-4
- AM1241
Catalog No.:BCC2551
CAS No.:444912-48-5
- Warangalone
Catalog No.:BCN4788
CAS No.:4449-55-2
- Cyclopamine
Catalog No.:BCN2964
CAS No.:4449-51-8
- CMX001
Catalog No.:BCC4106
CAS No.:444805-28-1
- Pazopanib (GW-786034)
Catalog No.:BCC1286
CAS No.:444731-52-6
- Norwogonin
Catalog No.:BCN3190
CAS No.:4443-09-8
- 2-Cyclohexylethylamine
Catalog No.:BCN1794
CAS No.:4442-85-7
- 1,4-Benzodioxane-6-carboxylic acid
Catalog No.:BCC8422
CAS No.:4442-54-0
- Vandetanib (ZD6474)
Catalog No.:BCC3883
CAS No.:443913-73-3
- BMS-345541(free base)
Catalog No.:BCC5374
CAS No.:445430-58-0
- SGS 518 oxalate
Catalog No.:BCC7750
CAS No.:445441-27-0
- BMS CCR2 22
Catalog No.:BCC7572
CAS No.:445479-97-0
- Homoeriodictyol
Catalog No.:BCN6804
CAS No.:446-71-9
- Genistein
Catalog No.:BCN5499
CAS No.:446-72-0
- Azathioprine
Catalog No.:BCC4762
CAS No.:446-86-6
- 2,4,5-Trimethoxybenzaldehyde
Catalog No.:BCN5498
CAS No.:4460-86-0
- YM 230888
Catalog No.:BCC5956
CAS No.:446257-23-4
- 4-(4-(5-(Aminomethyl)-2-oxooxazolidin-3-yl)phenyl)morpholin-3-one
Catalog No.:BCC8646
CAS No.:446292-10-0
- RepSox
Catalog No.:BCC1887
CAS No.:446859-33-2
- Angiotensin II human
Catalog No.:BCC4087
CAS No.:4474-91-3
- RLLFT-NH2
Catalog No.:BCC3954
CAS No.:447408-68-6
Low nitrogen stress stimulating the indole-3-acetic acid biosynthesis of Serratia sp. ZM is vital for the survival of the bacterium and its plant growth-promoting characteristic.[Pubmed:27803972]
Arch Microbiol. 2017 Apr;199(3):425-432.
Serratia sp. ZM is a plant growth-promoting (PGP) bacterial strain isolated from the rhizospheric soil of Populus euphratica in northwestern China. In this study, low nitrogen supply significantly stimulated the production of indole-3-acetic acid (IAA) in Serratia sp.ZM. The inoculation of the bacterium to wheat seedlings improved plant growth compared with the uninoculated group, and the stimulating effect was more prominent under low nitrogen stress. Inactivation of the predicted key gene in the IAA biosynthesis pathway impaired IAA production and significantly hampered mutant growth in poor medium. Furthermore, the IAA-deficient mutant lost the PGP effect under either normal or low nitrogen conditions in plant experiments. This study revealed the significant impact of environmental nitrogen levels on IAA production in the PGP strain and the vital effect of IAA on resistance physiology of both the bacterium and host plant. The characteristics of Serratia sp. ZM also indicated its application potential as a biofertilizer for plants, especially those suffering from poor nitrogen soil.
ZM-66, a new podophyllotoxin derivative inhibits proliferation and induces apoptosis in K562/ADM cells.[Pubmed:25264886]
Chin Med Sci J. 2014 Sep;29(3):174-9.
OBJECTIVE: To investigate the anti-tumor effect of ZM-66 on multidrug-resistant leukemic cell line K562/ADM. METHODS: The K562/ADM cells were treated with varying concentrations (0, 1, 2, 4 x 10(-)(3) mmol/L) of ZM-66 or etoposide for 24 hours. The proliferation was detected by Sulforhodamine B Sodium Salt (SRB) assay and apoptosis was detected by flow cytometry analysis and fluorescent staining. In addition, the expression levels of p53 and bax genes in K562/ADM cells were detected by RT-PCR analysis. The level of P-glycoprotein (P-gp), P53 and Bax protein in K562/ADM cells were detected by Western blot assay. RESULTS: SRB assay demonstrated that etoposide had little inhibitory effect on K562/ADM cells, whereas ZM-66 (1, 2, 4 x 10(-)(3) mmol/L) had significantly inhibitory effect on K562/ADM cells (all P<0.01). The acridine orange/propidium iodide dual staining showed that there were typical condensation of chromatin and nuclear fragmentation nuclei with red color in ZM-66 treated cells. Flow cytometric analysis showed that there was a significantly increase of apoptotic cells in K562/ADM cells after treated with ZM-66. RT-PCR showed that the p53 and bax mRNA expression levels in K562/ADM cells treated with ZM-66 at 1, 2, 4 x 10(-)(3) mmol/L were higher than those in the cell without treatment. Western blot showed that the P53 and Bax protein expression levels in K562/ADM cells treated with ZM-66 at 2, 4 x 10(-)(3) mmol/L were higher than those in the cell without treatment. But the P-gp protein expression level in K562/ADM cells treated with ZM-66 at 2, 4 x 10(-)(3) mmol/L was gradually lower than those in the cell without treatment. CONCLUSION: ZM-66 is able to induce cell death by apoptosis in vitro, as a result of the reverse of the apoptosis resistance in drug-resistant K562/ADM cells by modulating expression of key factors associated with apoptosis induction.
[New metalloendopeptidase of Morganella morganii ZM].[Pubmed:25895364]
Bioorg Khim. 2014 Nov-Dec;40(6):682-7.
Proteolytic activity which is inhibited in the presence of o-phenanthroline was found in M. morganii ZM. Intracellular proteases of M. morganii ZM unlimited split musculoskeletal actin in contrast to grimelysin. Several proteolitic proteins of M. morganii ZM cells were identified by zymography with gelatin. Metalloproteinase of M. morganii ZM cell lysate was purified by hydrophobic chromatography fractionation. The molecular weight of the protein was 35 kDa.
IL-2 induces a WAVE2-dependent pathway for actin reorganization that enables WASp-independent human NK cell function.[Pubmed:21383498]
J Clin Invest. 2011 Apr;121(4):1535-48.
Wiskott-Aldrich syndrome (WAS) is a primary immunodeficiency associated with an increased susceptibility to herpesvirus infection and hematologic malignancy as well as a deficiency of NK cell function. It is caused by defective WAS protein (WASp). WASp facilitates filamentous actin (F-actin) branching and is required for F-actin accumulation at the NK cell immunological synapse and NK cell cytotoxicity ex vivo. Importantly, the function of WASp-deficient NK cells can be restored in vitro after exposure to IL-2, but the mechanisms underlying this remain unknown. Using a WASp inhibitor as well as cells from patients with WAS, we have defined a direct effect of IL-2 signaling upon F-actin that is independent of WASp function. We found that IL-2 treatment of a patient with WAS enhanced the cytotoxicity of their NK cells and the F-actin content at the immunological synapses formed by their NK cells. IL-2 stimulation of NK cells in vitro activated the WASp homolog WAVE2, which was required for inducing WASp-independent NK cell function, but not for baseline activity. Thus, WAVE2 and WASp define parallel pathways to F-actin reorganization and function in human NK cells; although WAVE2 was not required for NK cell innate function, it was accessible through adaptive immunity via IL-2. These results demonstrate how overlapping cytoskeletal activities can utilize immunologically distinct pathways to achieve synonymous immune function.
Naphthyl ketones: a new class of Janus kinase 3 inhibitors.[Pubmed:10741557]
Bioorg Med Chem Lett. 2000 Mar 20;10(6):575-9.
Potent inhibition of Janus kinase 3 was found for a series of naphthyl(beta-aminoethyl)ketones (e.g. 7, pIC50 = 7.1+/-0.3). Further studies indicated that these compounds fragment in less than 1 h by retro-Michael reaction in the Jak3 in vitro ELISA assay procedure. The breakdown product of 7, 2-naphthylvinyl ketone (22, pIC50 = 6.8+/-0.3) showed very similar inhibitory activity to 7. Compounds 7 (in neutral buffer) and 22 will be useful pharmacological tools for the investigation of the Janus tyrosine kinase Jak3.