(RS)-APICASelective group II antagonist CAS# 170847-18-4 |
- INCB3344
Catalog No.:BCC1648
CAS No.:1262238-11-8
- INCB8761(PF-4136309)
Catalog No.:BCC1649
CAS No.:1341224-83-6
- MK-0812
Catalog No.:BCC1755
CAS No.:624733-88-6
- INCB 3284 dimesylate
Catalog No.:BCC1646
CAS No.:887401-93-6
Quality Control & MSDS
Number of papers citing our products
Chemical structure
3D structure
Cas No. | 170847-18-4 | SDF | Download SDF |
PubChem ID | 4694355 | Appearance | Powder |
Formula | C10H12NO5P | M.Wt | 257.18 |
Type of Compound | N/A | Storage | Desiccate at -20°C |
Solubility | Soluble to 100 mM in 1.1eq. NaOH | ||
Chemical Name | 1-amino-5-phosphono-2,3-dihydroindene-1-carboxylic acid | ||
SMILES | C1CC(C2=C1C=C(C=C2)P(=O)(O)O)(C(=O)O)N | ||
Standard InChIKey | ZNQZXIHSJUDIKL-UHFFFAOYSA-N | ||
Standard InChI | InChI=1S/C10H12NO5P/c11-10(9(12)13)4-3-6-5-7(17(14,15)16)1-2-8(6)10/h1-2,5H,3-4,11H2,(H,12,13)(H2,14,15,16) | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Description | Rigidified analog of MPPG; selective group II metabotropic glutamate receptor antagonist (IC50 = 30 μM) with no significant effect on group I and III mGlu receptors at concentrations up to 1 mM. Increases extracellular glutamate concentrations and possesses unusual inverse agonist-like action. |
(RS)-APICA Dilution Calculator
(RS)-APICA Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 3.8883 mL | 19.4416 mL | 38.8833 mL | 77.7665 mL | 97.2082 mL |
5 mM | 0.7777 mL | 3.8883 mL | 7.7767 mL | 15.5533 mL | 19.4416 mL |
10 mM | 0.3888 mL | 1.9442 mL | 3.8883 mL | 7.7767 mL | 9.7208 mL |
50 mM | 0.0778 mL | 0.3888 mL | 0.7777 mL | 1.5553 mL | 1.9442 mL |
100 mM | 0.0389 mL | 0.1944 mL | 0.3888 mL | 0.7777 mL | 0.9721 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- E4CPG
Catalog No.:BCC6888
CAS No.:170846-89-6
- CHPG
Catalog No.:BCC6910
CAS No.:170846-74-9
- Astressin
Catalog No.:BCC5790
CAS No.:170809-51-5
- Trityl candesartan cilexetil
Catalog No.:BCC9188
CAS No.:170791-09-0
- Aprepitant
Catalog No.:BCC1101
CAS No.:170729-80-3
- 11-Deoxymogroside V
Catalog No.:BCN8143
CAS No.:1707161-17-8
- Nociceptin
Catalog No.:BCC5686
CAS No.:170713-75-4
- 6beta-Hydroxyhispanone
Catalog No.:BCN7453
CAS No.:170711-93-0
- Bindone
Catalog No.:BCC8877
CAS No.:1707-95-5
- D-Mannitol diacetonide
Catalog No.:BCC8951
CAS No.:1707-77-3
- α-Conotoxin EI
Catalog No.:BCC5979
CAS No.:170663-33-9
- Fmoc-D-Abu-OH
Catalog No.:BCC3203
CAS No.:170642-27-0
- PNU 96415E
Catalog No.:BCC7467
CAS No.:170856-41-4
- Sonepiprazole
Catalog No.:BCC7879
CAS No.:170858-33-0
- Cyasterone
Catalog No.:BCN5416
CAS No.:17086-76-9
- Persianone
Catalog No.:BCN7359
CAS No.:170894-20-9
- Aburatubolactam A
Catalog No.:BCN1821
CAS No.:170894-24-3
- Donitriptan hydrochloride
Catalog No.:BCC7742
CAS No.:170911-68-9
- Dihydroactinidiolide
Catalog No.:BCN6890
CAS No.:17092-92-1
- Tetrindole mesylate
Catalog No.:BCC6763
CAS No.:170964-68-8
- EGLU
Catalog No.:BCC6871
CAS No.:170984-72-2
- H-Ser(tBu)-OMe.HCl
Catalog No.:BCC3033
CAS No.:17114-97-5
- PD 158780
Catalog No.:BCC7434
CAS No.:171179-06-9
- N-Methylquipazine dimaleate
Catalog No.:BCC6697
CAS No.:171205-17-7
Presynaptic excitability as a potential target for the treatment of the traumatic cerebellum.[Pubmed:15240995]
Pharmacology. 2004 Aug;71(4):192-8.
Using an extracellular recording method, we have previously shown a hyperexcitability of the presynaptic response in fluid percussion injury (FPI) in rats. In this study, we demonstrated that treatment with cis-ACBD, a glutamate reuptake inhibitor, depressed the presynaptic potential (PSP) in naive/sham controls, while it potentiated the PSP in FPI rats. On the contrary, (RS)-APICA, a selective group II metabotropic glutamate receptor antagonist, potentiated PSP in controls, but depressed PSP in FPI rats. These results indicate that an alteration of the normal function of metabotropic glutamate receptors and glutamate reuptake system or an altered reactivity of presynaptic fibers was induced by FPI. This alteration may contribute to the reported loss of Purkinje cells after FPI. PSP may be used as a potential tool for evaluating treatments of FPI or as a potential target for the prevention of Purkinje cell death.
Group II metabotropic glutamate receptors modulate extracellular glutamate in the nucleus accumbens.[Pubmed:11752112]
J Pharmacol Exp Ther. 2002 Jan;300(1):162-71.
The regulation of extracellular glutamate in the nucleus accumbens by group II metabotropic glutamate receptors (mGluR2/3) was examined in vivo. Stimulation of mGluR2/3 with 2R,4R-4-aminopyrrolidine-2,4-dicarboxylate (APDC) or N-acetylaspartylglutamate reduced extracellular glutamate levels. Conversely, blockade of mGluR2/3 by LY143495 or (RS)-1-amino-5-phosphonoindan-1-carboxylic acid (APICA) increased extracellular glutamate, an effect antagonized by the coadministration of APDC. These effects likely involve both vesicular and nonvesicular glutamate, because the increase in glutamate by APICA or the decrease by APDC was prevented by blocking N-type calcium channels and the release of glutamate after potassium-induced membrane depolarization was antagonized by APDC. In addition, blockade of the cystine-glutamate exchange, a major nonvesicular source of extracellular glutamate, by (S)-4-carboxyphenylglycine blocked the effects induced by either APDC or APICA. However, blockade of Na(+) channels by tetrodotoxin or Na(+)-dependent glutamate transporters by DL-threo-beta-benzyloxyaspartate failed to affect the alterations in extracellular glutamate by APICA or APDC, respectively. Group II mGluRs are G(i)-coupled and coperfusion with the cAMP-dependent protein kinase (PKA) activator Sp-cAMPS blocked the reduction in glutamate by APDC and the PKA inhibitor Rp-cAMPS prevented the elevation in glutamate by APICA. Taken together, these data support three conclusions: 1) group II mGluRs regulate both vesicular and nonvesicular release of glutamate in the nucleus accumbens, 2) there is tonic in vivo stimulation of mGluR2/3 by endogenous glutamate, and 3) modulation of group II mGluRs of extracellular glutamate is Ca(2+)- and PKA-dependent.
Group I, II, and III mGluR compounds affect rhythm generation in the gastric circuit of the crustacean stomatogastric ganglion.[Pubmed:10712449]
J Neurophysiol. 2000 Mar;83(3):1188-201.
We have studied the effects of group I, II, and III metabotropic glutamate receptor (mGluR) agonists on rhythm generation by the gastric circuit of the stomatogastric ganglion (STG) of the Caribbean spiny lobster Panulirus argus. All mGluR agonists and some antagonists we tested in this study had clear and distinct effects on gastric rhythm generation when superfused over combined oscillating or blocked silent STG preparations. A consistent difference between group I agonists and group II and III agonists was that group I agonists acted excitatory. The group I-specific agonists L-quisqualic acid and (S)-3,5-dihydroxyphenylglycine, as well as the nonspecific agonist (1S,3R)-1-aminocyclopentane-1, 3-dicarboxylic acid accelerated ongoing rhythms and could induce gastric rhythms in silent preparations. The group II agonist (2S,1'S, 2'S)-2-(carboxycyclopropyl)glycine (L-CCG-I) and the group III agonist L(+)-2-amino-4-phosphonobutyric acid (L-AP4) slowed down or completely blocked ongoing gastric rhythms and were without detectable effect on silent preparations. The action of L-CCG-I was blocked partially by the group-II-specific antagonist, (RS)-1-amino-5-phosphonoindan-1-carboxylic acid [(RS)APICA], and the group-III-specific antagonist (RS)-alpha-methyl-4-phosphonophenylglycine completely blocked the action of L-AP4. Besides its antagonistic action, the group-II-specific antagonist (RS)APICA had a remarkably strong apparent inverse agonist action when applied alone on oscillating preparations. The action of all drugs was dose dependent and reversible, although recovery was not always complete. In our experiments, the effects of none of the mGluR-specific agonists were antagonized or amplified by the N-methyl-D-aspartate (NMDA)-receptor-specific antagonist D(-)-2-amino-5-phosphonopentanoic acid, excluding the contamination of responses to mGluR agonists by nonspecific cross-reactivity with NMDA receptors. Picrotoxin did not prevent the inhibitory action of L-CCG-I and L-AP4. We conclude that mGluRs, probably similar to those belonging to groups I, II, and III described in mammals, may play a role as modulators of gastric circuit rhythm generation in vivo.