α-Conotoxin EI

α1β1δγ selective nAChR antagonist CAS# 170663-33-9

α-Conotoxin EI

Catalog No. BCC5979----Order now to get a substantial discount!

Product Name & Size Price Stock
α-Conotoxin EI: 5mg $3312 In Stock
α-Conotoxin EI: 10mg Please Inquire In Stock
α-Conotoxin EI: 20mg Please Inquire Please Inquire
α-Conotoxin EI: 50mg Please Inquire Please Inquire
α-Conotoxin EI: 100mg Please Inquire Please Inquire
α-Conotoxin EI: 200mg Please Inquire Please Inquire
α-Conotoxin EI: 500mg Please Inquire Please Inquire
α-Conotoxin EI: 1000mg Please Inquire Please Inquire
Related Products

Quality Control of α-Conotoxin EI

Number of papers citing our products

Chemical structure

α-Conotoxin EI

3D structure

Chemical Properties of α-Conotoxin EI

Cas No. 170663-33-9 SDF Download SDF
PubChem ID 90488801 Appearance Powder
Formula C83H125N27O27S5 M.Wt 2093.4
Type of Compound N/A Storage Desiccate at -20°C
Solubility Soluble to 2 mg/ml in 10% acetonitrile
Sequence RDXCCYHPTCNMSNPQIC

(Modifications: X = Hyp, Cys-18 = C-terminal amide, Disulfide bridge between 4 - 10, 5 - 17)

Chemical Name (3S)-3-[[(2S)-2-amino-5-carbamimidamidopentanoyl]amino]-4-[(2S,4R)-2-[[(1R,6R,9S,12S,15S,21S,24S,27S,30S,33R,36S,39S,45S,48S,53R)-21,30-bis(2-amino-2-oxoethyl)-12-(3-amino-3-oxopropyl)-9-[(2S)-butan-2-yl]-6-carbamoyl-36-[(1R)-1-hydroxyethyl]-24-(hydroxymethyl)-48-[(4-hydroxyphenyl)methyl]-45-(1H-imidazol-4-ylmethyl)-27-(2-methylsulfanylethyl)-8,11,14,20,23,26,29,32,35,38,44,47,50,52-tetradecaoxo-3,4,55,56-tetrathia-7,10,13,19,22,25,28,31,34,37,43,46,49,51-tetradecazatetracyclo[31.17.7.015,19.039,43]heptapentacontan-53-yl]carbamoyl]-4-hydroxypyrrolidin-1-yl]-4-oxobutanoic acid
SMILES CCC(C)C1C(=O)NC(CSSCC2C(=O)NC(C(=O)NC(C(=O)N3CCCC3C(=O)NC(C(=O)NC(CSSCC(C(=O)N2)NC(=O)C4CC(CN4C(=O)C(CC(=O)O)NC(=O)C(CCCNC(=N)N)N)O)C(=O)NC(C(=O)NC(C(=O)NC(C(=O)NC(C(=O)N5CCCC5C(=O)NC(C(=O)N1)CCC(=O)N)CC(=O)N)CO)CCSC)CC(=O)N)C(C)O)CC6=CNC=N6)CC7=CC=C(C=C7)O)C(=O)N
Standard InChIKey ZUOKYBVKCMQKIN-MLWUHNSQSA-N
Standard InChI InChI=1S/C83H125N27O27S5/c1-5-37(2)63-78(133)102-52(65(88)120)32-139-140-33-53-72(127)96-46(23-39-12-14-41(113)15-13-39)69(124)99-48(24-40-29-91-36-93-40)80(135)109-21-8-11-57(109)76(131)107-64(38(3)112)79(134)105-55(35-142-141-34-54(74(129)103-53)104-77(132)58-25-42(114)30-110(58)82(137)50(28-62(118)119)98-66(121)43(84)9-6-19-92-83(89)90)73(128)97-47(26-60(86)116)70(125)94-45(18-22-138-4)67(122)101-51(31-111)71(126)100-49(27-61(87)117)81(136)108-20-7-10-56(108)75(130)95-44(68(123)106-63)16-17-59(85)115/h12-15,29,36-38,42-58,63-64,111-114H,5-11,16-28,30-35,84H2,1-4H3,(H2,85,115)(H2,86,116)(H2,87,117)(H2,88,120)(H,91,93)(H,94,125)(H,95,130)(H,96,127)(H,97,128)(H,98,121)(H,99,124)(H,100,126)(H,101,122)(H,102,133)(H,103,129)(H,104,132)(H,105,134)(H,106,123)(H,107,131)(H,118,119)(H4,89,90,92)/t37-,38+,42+,43-,44-,45-,46-,47-,48-,49-,50-,51-,52-,53-,54-,55-,56-,57-,58-,63-,64-/m0/s1
General tips For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months.
We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months.
Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it.
About Packaging 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial.
2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial.
3. Try to avoid loss or contamination during the experiment.
Shipping Condition Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request.

Biological Activity of α-Conotoxin EI

DescriptionSelective antagonist of neuromuscular nicotinic receptors α1β1γδ. Displays selectivity for α/δ sites over α/γ sites in Torpedo.

α-Conotoxin EI Dilution Calculator

Concentration (start)
x
Volume (start)
=
Concentration (final)
x
Volume (final)
 
 
 
C1
V1
C2
V2

calculate

α-Conotoxin EI Molarity Calculator

Mass
=
Concentration
x
Volume
x
MW*
 
 
 
g/mol

calculate

Organizitions Citing Our Products recently

 
 
 

Calcutta University

University of Minnesota

University of Maryland School of Medicine

University of Illinois at Chicago

The Ohio State University

University of Zurich

Harvard University

Colorado State University

Auburn University

Yale University

Worcester Polytechnic Institute

Washington State University

Stanford University

University of Leipzig

Universidade da Beira Interior

The Institute of Cancer Research

Heidelberg University

University of Amsterdam

University of Auckland
TsingHua University
TsingHua University
The University of Michigan
The University of Michigan
Miami University
Miami University
DRURY University
DRURY University
Jilin University
Jilin University
Fudan University
Fudan University
Wuhan University
Wuhan University
Sun Yat-sen University
Sun Yat-sen University
Universite de Paris
Universite de Paris
Deemed University
Deemed University
Auckland University
Auckland University
The University of Tokyo
The University of Tokyo
Korea University
Korea University
Featured Products
New Products
 

References on α-Conotoxin EI

Solution conformation of alpha-conotoxin EI, a neuromuscular toxin specific for the alpha 1/delta subunit interface of torpedo nicotinic acetylcholine receptor.[Pubmed:11641403]

J Biol Chem. 2001 Dec 28;276(52):49028-33.

A high resolution structure of alpha-conotoxin EI has been determined by (1)H NMR spectroscopy and molecular modeling. alpha-Conotoxin EI has the same disulfide framework as alpha 4/7 conotoxins targeting neuronal nicotinic acetylcholine receptors but antagonizes the neuromuscular receptor as do the alpha 3/5 and alpha A conotoxins. The unique binding preference of alpha-conotoxin EI to the alpha(1)/delta subunit interface of Torpedo neuromuscular receptor makes it a valuable structural template for superposition of various alpha-conotoxins possessing distinct receptor subtype specificities. Structural comparison of alpha-conotoxin EI with the gamma-subunit favoring alpha-conotoxin GI suggests that the Torpedo delta-subunit preference of the former originates from its second loop. Superposition of three-dimensional structures of seven alpha-conotoxins reveals that the estimated size of the toxin-binding pocket in nicotinic acetylcholine receptor is approximately 20 A (height) x 20 A (width) x 15 A (thickness).

Novel alpha-conotoxins from Conus spurius and the alpha-conotoxin EI share high-affinity potentiation and low-affinity inhibition of nicotinic acetylcholine receptors.[Pubmed:17635581]

FEBS J. 2007 Aug;274(15):3972-85.

alpha-Conotoxins from marine snails are known to be selective and potent competitive antagonists of nicotinic acetylcholine receptors. Here we describe the purification, structural features and activity of two novel toxins, SrIA and SrIB, isolated from Conus spurius collected in the Yucatan Channel, Mexico. As determined by direct amino acid and cDNA nucleotide sequencing, the toxins are peptides containing 18 amino acid residues with the typical 4/7-type framework but with completely novel sequences. Therefore, their actions (and that of a synthetic analog, [gamma15E]SrIB) were compared to those exerted by the alpha4/7-conotoxin EI from Conus ermineus, used as a control. Their target specificity was evaluated by the patch-clamp technique in mammalian cells expressing alpha(1)beta(1)gammadelta, alpha(4)beta(2) and alpha(3)beta(4) nicotinic acetylcholine receptors. At high concentrations (10 microm), the peptides SrIA, SrIB and [gamma15E]SrIB showed weak blocking effects only on alpha(4)beta(2) and alpha(1)beta(1)gammadelta subtypes, but EI also strongly blocked alpha(3)beta(4) receptors. In contrast to this blocking effect, the new peptides and EI showed a remarkable potentiation of alpha(1)beta(1)gammadelta and alpha(4)beta(2) nicotinic acetylcholine receptors if briefly (2-15 s) applied at concentrations several orders of magnitude lower (EC(50), 1.78 and 0.37 nm, respectively). These results suggest not only that the novel alpha-conotoxins and EI can operate as nicotinic acetylcholine receptor inhibitors, but also that they bind both alpha(1)beta(1)gammadelta and alpha(4)beta(2) nicotinic acetylcholine receptors with very high affinity and increase their intrinsic cholinergic response. Their unique properties make them excellent tools for studying the toxin-receptor interaction, as well as models with which to design highly specific therapeutic drugs.

alpha-Conotoxin EI, a new nicotinic acetylcholine receptor antagonist with novel selectivity.[Pubmed:7578057]

Biochemistry. 1995 Nov 7;34(44):14519-26.

We report the isolation and characterization of a novel nicotinic acetylcholine receptor (nAChR) ligand. The toxin is an 18 amino acid peptide and is the first reported alpha-conotoxin from an Atlantic fish-hunting Conus. The peptide was purified from the venom of Conus ermineus and is called alpha-conotoxin EI. The sequence diverges from that of previously isolated alpha-conotoxins. We demonstrate that this structural divergence has functional consequences. In Torpedo nAChRs, alpha-conotoxin EI selectively binds the agonist site near the alpha/delta subunit interface in contrast to alpha-conotoxin MI which selectively targets the alpha/gamma agonist binding site. In mammalian nAChRs alpha-conotoxin EI shows high affinity for both the alpha/delta and alpha/gamma subunit interfaces (with some preference for the alpha/delta site), whereas alpha-conotoxin MI is highly selective for the alpha/delta ligand binding site. The sequence of the peptide is: Arg-Asp-Hyp-Cys-Cys-Tyr-His-Pro-Thr-Cys-Asn-Met-Ser-Asn-Pro-Gln-Ile-Cys- NH2, with disulfide bridging between Cys4-Cys10 and Cys5-Cys18, analogous to those of previously described alpha-conotoxins. This sequence has been verified by total chemical synthesis. Thus, alpha-conotoxin EI is a newly-available tool with unique structure and function for characterization of nAChRs.

Keywords:

α-Conotoxin EI,170663-33-9,Natural Products,Nicotinic Receptor, buy α-Conotoxin EI , α-Conotoxin EI supplier , purchase α-Conotoxin EI , α-Conotoxin EI cost , α-Conotoxin EI manufacturer , order α-Conotoxin EI , high purity α-Conotoxin EI

Online Inquiry for:

      Fill out the information below

      • Size:Qty: - +

      * Required Fields

                                      Result: