1-Dehydro-6-gingerdioneCAS# 76060-35-0 |
2D Structure
Quality Control & MSDS
3D structure
Package In Stock
Number of papers citing our products
Cas No. | 76060-35-0 | SDF | Download SDF |
PubChem ID | 71401862 | Appearance | Powder |
Formula | C17H22O4 | M.Wt | 290.4 |
Type of Compound | Phenols | Storage | Desiccate at -20°C |
Solubility | Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc. | ||
Chemical Name | 1-(4-hydroxy-3-methoxyphenyl)dec-1-ene-3,5-dione | ||
SMILES | CCCCCC(=O)CC(=O)C=CC1=CC(=C(C=C1)O)OC | ||
Standard InChIKey | JUKHKHMSQCQHEN-UHFFFAOYSA-N | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Description | 1. 1-Dehydro-6-gingerdione is 5-HT1A receptor partial agonists. 2. 1-Dehydro-6-gingerdione has antioxidant and anti-inflammatory activities. 3. 1-Dehydro-6-gingerdione significantly suppresses the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) proteins in a concentration-dependent fashion. |
Targets | PGE | NOS | COX |
1-Dehydro-6-gingerdione Dilution Calculator
1-Dehydro-6-gingerdione Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 3.4435 mL | 17.2176 mL | 34.4353 mL | 68.8705 mL | 86.0882 mL |
5 mM | 0.6887 mL | 3.4435 mL | 6.8871 mL | 13.7741 mL | 17.2176 mL |
10 mM | 0.3444 mL | 1.7218 mL | 3.4435 mL | 6.8871 mL | 8.6088 mL |
50 mM | 0.0689 mL | 0.3444 mL | 0.6887 mL | 1.3774 mL | 1.7218 mL |
100 mM | 0.0344 mL | 0.1722 mL | 0.3444 mL | 0.6887 mL | 0.8609 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- Broussonin C
Catalog No.:BCN4588
CAS No.:76045-49-3
- 3-Epikatonic acid
Catalog No.:BCN4308
CAS No.:76035-62-6
- Lanatin
Catalog No.:BCC8194
CAS No.:76026-24-9
- H-DL-Nva-OH
Catalog No.:BCC3303
CAS No.:760-78-1
- Conopharyngine
Catalog No.:BCN3975
CAS No.:76-98-2
- Mepenzolate Bromide
Catalog No.:BCC3809
CAS No.:76-90-4
- Trityl Chloride
Catalog No.:BCC2805
CAS No.:76-83-5
- Tephrosin
Catalog No.:BCN4742
CAS No.:76-80-2
- Quassin
Catalog No.:BCN4315
CAS No.:76-78-8
- Neoquassine
Catalog No.:BCN3120
CAS No.:76-77-7
- Rhynchophylline
Catalog No.:BCN4979
CAS No.:76-66-4
- Bornyl isobutyrate
Catalog No.:BCC8134
CAS No.:50277-27-5
- Myricoside
Catalog No.:BCC8342
CAS No.:76076-04-5
- Artocarpin
Catalog No.:BCN4309
CAS No.:7608-44-8
- SCH 28080
Catalog No.:BCC7154
CAS No.:76081-98-6
- Enalapril maleate
Catalog No.:BCC8955
CAS No.:76095-16-4
- Hederacoside D
Catalog No.:BCN2330
CAS No.:760961-03-3
- Solithromycin
Catalog No.:BCC6446
CAS No.:760981-83-7
- Phaseollidin hydrate
Catalog No.:BCN3962
CAS No.:76122-57-1
- 7-Hydroxy-DPAT hydrobromide
Catalog No.:BCC6756
CAS No.:76135-30-3
- 8-Hydroxy-DPAT hydrobromide
Catalog No.:BCC6681
CAS No.:76135-31-4
- Glucosylvitexin
Catalog No.:BCN5929
CAS No.:76135-82-5
- Ipragliflozin
Catalog No.:BCC5137
CAS No.:761423-87-4
- ALK inhibitor 1
Catalog No.:BCC1339
CAS No.:761436-81-1
In vitro antioxidant and anti-inflammatory activities of 1-dehydro-[6]-gingerdione, 6-shogaol, 6-dehydroshogaol and hexahydrocurcumin.[Pubmed:22868095]
Food Chem. 2012 Nov 15;135(2):332-7.
Hexahydrocurcumin, 1-dehydro-[6]-gingerdione, 6-dehydroshogaol and 6-shogaol were evaluated for their antioxidant and anti-inflammatory activities in the present study. The relative antioxidant potencies of ginger compounds decreased in similar order of 1-dehydro-[6]-gingerdione, hexahydrocurcumin>6-shogaol>6-dehydroshogaol in both 1,1-diphenyl-2-picyrlhydrazyl (DPPH) radical-scavenging and trolox equivalent antioxidant capacity (TEAC) assays. All tested compounds could attenuate lipopolysaccharide (LPS)-elicited increase of prostaglandin E2 (PGE(2)) in murine macrophages (RAW 264.7) in a concentration-dependent manner but hexahydrocurcumin of 7muM and 6-shogaol of 7muM. The strongest inhibitory effect was observed for 6-dehydroshogaol and 6-shogaol at 14muM with the inhibition of 53.3% and 48.9%, respectively. Furthermore, both 6-dehydroshogaol and 1-dehydro-[6]-gingerdione significantly suppressed the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) proteins in a concentration-dependent fashion. These results contribute to our theoretical understanding of the potential beneficial effects of consuming ginger as a food and/or dietary supplement.