11,15-Dihydroxy-16-kauren-19-oic acidCAS# 57719-76-3 |
Quality Control & MSDS
Number of papers citing our products
Chemical structure
3D structure
Cas No. | 57719-76-3 | SDF | Download SDF |
PubChem ID | 133612145 | Appearance | Powder |
Formula | C20H30O4 | M.Wt | 334.5 |
Type of Compound | Diterpenoids | Storage | Desiccate at -20°C |
Solubility | Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc. | ||
SMILES | CC12CCCC(C1CCC34C2C(CC(C3)C(=C)C4O)O)(C)C(=O)O | ||
Standard InChIKey | VRVOLALMVUEAHP-MRHRFJSUSA-N | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
In vitro | Kaurane-type diterpenes from Adenostemma lavenia O. Kuntze.[Reference: WebLink]CHEMICAL & PHARMACEUTICAL BULLETIN, 1990, 38(5):1308-1312.
|
Structure Identification | Journal of Natural Products, 1979, 42(2):183-186.Isolation of 11-Hydroxyated Kauranic Acids From Adenostemma lavenia.[Reference: WebLink]
|
11,15-Dihydroxy-16-kauren-19-oic acid Dilution Calculator
11,15-Dihydroxy-16-kauren-19-oic acid Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 2.9895 mL | 14.9477 mL | 29.8954 mL | 59.7907 mL | 74.7384 mL |
5 mM | 0.5979 mL | 2.9895 mL | 5.9791 mL | 11.9581 mL | 14.9477 mL |
10 mM | 0.299 mL | 1.4948 mL | 2.9895 mL | 5.9791 mL | 7.4738 mL |
50 mM | 0.0598 mL | 0.299 mL | 0.5979 mL | 1.1958 mL | 1.4948 mL |
100 mM | 0.0299 mL | 0.1495 mL | 0.299 mL | 0.5979 mL | 0.7474 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- CGP 7930
Catalog No.:BCC7096
CAS No.:57717-80-3
- Kansuinine A
Catalog No.:BCN3765
CAS No.:57701-86-7
- 2-Acetylbenzoic acid
Catalog No.:BCN5786
CAS No.:577-56-0
- Flavanomarein
Catalog No.:BCN6429
CAS No.:577-38-8
- Kansuinine B
Catalog No.:BCN3766
CAS No.:57685-46-8
- Palmitic acid-1-13C
Catalog No.:BCC8229
CAS No.:57677-53-9
- Baccatin VI
Catalog No.:BCN7229
CAS No.:57672-79-4
- 1-Dehydroxybaccatin IV
Catalog No.:BCN7211
CAS No.:57672-78-3
- Baccatin IV
Catalog No.:BCN5785
CAS No.:57672-77-2
- Fenobam
Catalog No.:BCC7345
CAS No.:57653-26-6
- Piperenone
Catalog No.:BCN6578
CAS No.:57625-31-7
- Biocytin
Catalog No.:BCC7659
CAS No.:576-19-2
- ent-11alpha-Hydroxy-15-oxokaur-16-en-19-oic acid
Catalog No.:BCN7372
CAS No.:57719-81-0
- 4-(Ethoxymethyl)phenol
Catalog No.:BCN4753
CAS No.:57726-26-8
- Equisetin
Catalog No.:BCN1835
CAS No.:57749-43-6
- Nisoxetine hydrochloride
Catalog No.:BCC6894
CAS No.:57754-86-6
- WAY 629 hydrochloride
Catalog No.:BCC7271
CAS No.:57756-44-2
- Cardionogen 1
Catalog No.:BCC6199
CAS No.:577696-37-8
- Topiroxostat
Catalog No.:BCC4202
CAS No.:577778-58-6
- 4-(2-Hydroxy-1-methoxyethyl)-1,2-benzenediol
Catalog No.:BCN1412
CAS No.:577976-26-2
- 8-Aminoquinoline
Catalog No.:BCC8784
CAS No.:578-66-5
- Cosmosiin
Catalog No.:BCN5788
CAS No.:578-74-5
- Liquiritigenin
Catalog No.:BCN5946
CAS No.:578-86-9
- Domperidone
Catalog No.:BCC4461
CAS No.:57808-66-9
11,12-Epoxyeicosatrienoic acid induces vasodilator response in the rat perfused mesenteric vasculature.[Pubmed:28332266]
Auton Autacoid Pharmacol. 2017 Jan;37(1):3-12.
Epoxyeicosatrienoic acids (EETs) are endogenous ligands that undergo hydrolysis by soluble epoxide hydrolase (sEH). The responses of 11, 12-EET in comparison with other vasodilator agonists including carbachol and sodium nitroprusside (SNP) were investigated. The effect of 1-cyclohexyl-3-dodecyl urea (CDU), a sEH, was tested on the vasodilator effect induced by 11, 12-EET in the perfused mesenteric beds isolated from normo-glycaemic and type-1 STZ-diabetic rats. In the perfused mesenteric beds of control and diabetic animals, 11, 12-EET produced vasodilation in a dose-dependent manner. The vasodilator response induced by 11, 12-EET was significantly decreased in tissues obtained from diabetic animals, but this was significantly corrected through inhibition of sEH. The effects of nitric oxide synthase inhibitor, cyclo-oxygenase inhibitor, specific potassium channel inhibitors, soluble guanylyl cyclase inhibitor and transient receptor potential channel V4 inhibitor, on vasodilator response to 11, 12-EET were investigated. In tissues isolated from control animals, vasodilator responses to 11, 12-EET were not inhibited by acute incubation with l-NAME, l-NAME with indomethacin, glibenclamide, iberiotoxin, charybdotoxin, apamin or ODQ. Incubation with the transient receptor potential channel V4 inhibitor ruthenium red caused significantly reduced vasodilator responses induced by 11, 12-EET. In conclusion, results from this study indicate that 11, 12-EET has a vasodilator effect in the perfused mesenteric bed, partly through activation of vanilloid receptor. A strategy to elevate the levels of EETs may have a significant impact in correcting microvascular abnormality associated with diabetes.
Coenzyme A thioester formation of 11- and 15-oxo-eicosatetraenoic acid.[Pubmed:28238887]
Prostaglandins Other Lipid Mediat. 2017 May;130:1-7.
Release of arachidonic acid (AA) by cytoplasmic phospholipase A2 (cPLA2), followed by metabolism through cyclooxygenase-2 (COX-2) and 15-hydroxyprostaglandin dehydrogenase (15-PGDH), results in the formation of the eicosanoids 11-oxo- and 15-oxo-eicosatetraenoic acid (oxo-ETE). Both 11-oxo- and 15-oxo-ETE have been identified in human biospecimens but their function and further metabolism is poorly described. The oxo-ETEs contain an alpha,beta-unsaturated ketone and a free carboxyclic acid, and thus may form Michael adducts with a nucleophile or a thioester with the free thiol of Coenzyme A (CoA). To examine the potential for eicosanoid-CoA formation, which has not previously been a metabolic route examined for this class of lipids, we applied a semi-targeted neutral loss scanning approach following arachidonic acid treatment in cell culture and detected inducible long-chain acyl-CoAs including a predominant AA-CoA peak. Interestingly, a series of AA-inducible acyl-CoAs at lower abundance but higher mass, likely corresponding to eicosanoid metabolites, was detected. Using a targeted LC-MS/MS approach we detected the formation of CoA thioesters of both 11-oxo- and 15-oxo-ETE and monitored the kinetics of their formation. Subsequently, we demonstrated that these acyl-CoA species undergo up to four double bond reductions. We confirmed the generation of 15-oxo-ETE-CoA in human platelets via LC-high resolution MS. Acyl-CoA thioesters of eicosanoids may provide a route to generate reducing equivalents, substrates for fatty acid oxidation, and substrates for acyl-transferases through cPLA2-dependent eicosanoid metabolism outside of the signaling contexts traditionally ascribed to eicosanoid metabolites.
Understanding the role of 3-O-Acetyl-11-keto-beta-boswellic acid in conditions of oxidative-stress mediated hepatic dysfunction during benzo(a)pyrene induced toxicity.[Pubmed:28363852]
Food Chem Toxicol. 2017 Nov;109(Pt 2):871-878.
The present study was planned to see whether 3-O-Acetyl-11- keto-beta-boswellic acid has any protective effects against benzo(a)pyrene (BaP) induced toxicity or not. In vitro studies show concentration dependent linear association of radical scavenging activity of AK which is comparable to ascorbic acid taken as reference compound. For in vivo studies, the animals were divided randomly into five groups which included a) normal control, b) vehicle treated (olive oil), c) BaP treated, d) AK treated and e) AK + BaP (combined treated). BaP was administered at a dose of 50mg/kg in olive oil twice a week orally for 4 weeks and AK (50mg/kg) was given in olive oil thrice a week for 4 weeks before and after BaP exposure. BaP treated animals showed a significant increase (p < 0.001) in lipid peroxidation (LPO) and protein carbonyl contents (PCC) in hepatic tissue. Further, a significant increase (p < 0.001) in the liver marker enzymes as well as citrulline and nitric oxide levels in the hepatic tissue was also observed. Interestingly, AK when supplemented to BaP treated animals ameliorated the above said biochemical indices appreciately. The histopathological observations also showed appreciable improvement when BaP treated animals were supplemented with AK, thus emphasing the protective potential of AK.
An open sandwich immunoassay for detection of 13(R,S)-hydroxy-9(E),11(E)-octadecadienoic acid.[Pubmed:28144646]
Analyst. 2017 Feb 27;142(5):787-793.
Lipid peroxidation is involved in many disorders and diseases such as cardiovascular disease, cancers, neurodegenerative diseases, and even aging. Lipid peroxidation products existing in blood or bodily fluids are very important biomarkers for the diagnosis of such diseases. In particular, 13(R,S)-hydroxy-9(E),11(E)-octadecadienoic acid (13-(E,E)-HODE) is an oxidiation product of linoleic acid, which is an important biomarker for many diseases such as diabetes and Alzheimer's disease. In this study, we successfully displayed the antigen-binding fragment of an antibody produced by hybridoma 1213-1 on the M13 phage and performed analysis of the antibody variable region genes. The blast results suggested that it is a novel antibody. We also developed a phage-antibody-based competitive ELISA and a novel Open Sandwich ELISA (OS ELISA) for the detection of 13-(E,E)-HODE. The OS ELISA showed a limit of detection (LOD) of 15.6 nM of 13-(E,E)-HODE and low cross-reactivity with other HODE such as 9-(E,E)-HODE. Another format of the open sandwich ELISA with purified maltose binding protein-fused VL and VH-phage showed a lower LOD of 2.2 nM of 13-(E,E)-HODE, which may be sensitive enough to detect the concentration of 13-(E,E)-HODE in patients' blood samples. This is the first OS ELISA for the detection of lipids, and we believe it also represents the first molecular cloning of anti-HODE antibody genes.