2-Hydroxy-1-methoxyanthraquinoneCAS# 6170-06-5 |
- Alizarin 1-methyl ether
Catalog No.:BCN9064
CAS No.: 6170-06-5
Quality Control & MSDS
Number of papers citing our products
Chemical structure
3D structure
Cas No. | 6170-06-5 | SDF | Download SDF |
PubChem ID | 80309 | Appearance | Yellow powder |
Formula | C15H10O4 | M.Wt | 254.2 |
Type of Compound | Anthraquinones | Storage | Desiccate at -20°C |
Synonyms | Alizarin 1-methyl ether | ||
Solubility | Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc. | ||
Chemical Name | 2-hydroxy-1-methoxyanthracene-9,10-dione | ||
SMILES | COC1=C(C=CC2=C1C(=O)C3=CC=CC=C3C2=O)O | ||
Standard InChIKey | VRGZEPNGEFBVIZ-UHFFFAOYSA-N | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Description | 1. 2-Hydroxy-1-methoxy- anthraquinone can promote osteoblast proliferation, and can inhibit osteoclast TRAP activity and bone resorption, suggests that it has antiosteoporotic activity. |
2-Hydroxy-1-methoxyanthraquinone Dilution Calculator
2-Hydroxy-1-methoxyanthraquinone Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 3.9339 mL | 19.6696 mL | 39.3391 mL | 78.6782 mL | 98.3478 mL |
5 mM | 0.7868 mL | 3.9339 mL | 7.8678 mL | 15.7356 mL | 19.6696 mL |
10 mM | 0.3934 mL | 1.967 mL | 3.9339 mL | 7.8678 mL | 9.8348 mL |
50 mM | 0.0787 mL | 0.3934 mL | 0.7868 mL | 1.5736 mL | 1.967 mL |
100 mM | 0.0393 mL | 0.1967 mL | 0.3934 mL | 0.7868 mL | 0.9835 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- Ethyl vanillate
Catalog No.:BCN3670
CAS No.:617-05-0
- OMDM-2
Catalog No.:BCC5814
CAS No.:616884-63-0
- H-Alaninol
Catalog No.:BCC2731
CAS No.:6168-72-5
- 3-(Dimethylsulfonio)-N,N,N-trimethylpropanaminium(2+)
Catalog No.:BCN1397
CAS No.:61672-51-3
- Trimethyl[3-(methylthio)propyl]ammonium(1+)
Catalog No.:BCN1398
CAS No.:61672-50-2
- Neridienone B
Catalog No.:BCN4143
CAS No.:61671-56-5
- 11-Methoxyuncarine C
Catalog No.:BCN4142
CAS No.:61665-08-5
- Furomollugin
Catalog No.:BCN4141
CAS No.:61658-41-1
- MK 212 hydrochloride
Catalog No.:BCC6856
CAS No.:61655-58-1
- Propargyl p-toluenesulfonate
Catalog No.:BCN2266
CAS No.:6165-76-0
- Propargyl benzenesulfonate
Catalog No.:BCN2247
CAS No.:6165-75-9
- Protopine hydrochloride
Catalog No.:BCN5345
CAS No.:6164-47-2
- 2-Chloro-1,4-phenylenediamine sulfate
Catalog No.:BCN8435
CAS No.:61702-44-1
- W-5 hydrochloride
Catalog No.:BCC6621
CAS No.:61714-25-8
- W-7 hydrochloride
Catalog No.:BCC6622
CAS No.:61714-27-0
- Fluvoxamine maleate
Catalog No.:BCC1215
CAS No.:61718-82-9
- Methyl 2-(5-acetyl-2,3-dihydrobenzofuran-2-yl)propenoate
Catalog No.:BCN1396
CAS No.:617722-55-1
- Methyl 2-(6-acetyl-5-hydroxy-2,3-dihydrobenzofuran-2-yl)propenoate
Catalog No.:BCN1395
CAS No.:617722-56-2
- 5-O-Methylnaringenin
Catalog No.:BCN4144
CAS No.:61775-19-7
- Ethyl 3,4,5-trimethoxybenzoate
Catalog No.:BCN3973
CAS No.:6178-44-5
- Trans-Melilotoside
Catalog No.:BCC8364
CAS No.:618-67-7
- Oxaliplatin
Catalog No.:BCC3932
CAS No.:61825-94-3
- Sipeimine
Catalog No.:BCN1201
CAS No.:61825-98-7
- Vorapaxar
Catalog No.:BCC3996
CAS No.:618385-01-6
Antiosteoporotic activity of anthraquinones from Morinda officinalis on osteoblasts and osteoclasts.[Pubmed:19169204]
Molecules. 2009 Jan 23;14(1):573-83.
Bioactivity-guided fractionation led to the successful isolation of antiosteoporotic components, i.e. physicion (1), rubiadin-1-methyl ether (2), 2-hydroxy-1-methoxy- anthraquinone (3), 1,2-dihydroxy-3-methylanthraquinone (4), 1,3,8-trihydroxy-2-methoxy- anthraquinone (5), 2-hydroxymethyl-3-hydroxyanthraquinone (6), 2-methoxyanthraquinone (7) and scopoletin (8) from an ethanolic extract of the roots of Morinda officinalis. Compounds 4-8 are isolated for the first time from M. officinalis. Among them, compounds 2 and 3 promoted osteoblast proliferation, while compounds 4, 5 increased osteoblast ALP activity. All of the isolated compounds inhibited osteoclast TRAP activity and bone resorption, and the inhibitory effects on osteoclastic bone resorption of compounds 1 and 5 were stronger than that of other compounds. Taken together, antiosteoporotic activity of M. officinalis and its anthraquinones suggest therapeutic potential against osteoporosis.