24(31)-Dehydrocarboxyacetylquercinic acidCAS# 127970-62-1 |
Quality Control & MSDS
Number of papers citing our products
Chemical structure
3D structure
Cas No. | 127970-62-1 | SDF | Download SDF |
PubChem ID | 129317251 | Appearance | Powder |
Formula | C34H50O7 | M.Wt | 570.8 |
Type of Compound | Triterpenoids | Storage | Desiccate at -20°C |
Solubility | Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc. | ||
Chemical Name | 6-[(5S,10S,13R,14R,17S)-3-(2-carboxyacetyl)oxy-4,4,10,13,14-pentamethyl-2,3,5,6,7,11,12,15,16,17-decahydro-1H-cyclopenta[a]phenanthren-17-yl]-2-methyl-3-methylidene-4-oxoheptanoic acid | ||
SMILES | CC(CC(=O)C(=C)C(C)C(=O)O)C1CCC2(C1(CCC3=C2CCC4C3(CCC(C4(C)C)OC(=O)CC(=O)O)C)C)C | ||
Standard InChIKey | LJDYIANNVNRBHB-OFHLCFMDSA-N | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
24(31)-Dehydrocarboxyacetylquercinic acid Dilution Calculator
24(31)-Dehydrocarboxyacetylquercinic acid Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 1.7519 mL | 8.7596 mL | 17.5193 mL | 35.0385 mL | 43.7982 mL |
5 mM | 0.3504 mL | 1.7519 mL | 3.5039 mL | 7.0077 mL | 8.7596 mL |
10 mM | 0.1752 mL | 0.876 mL | 1.7519 mL | 3.5039 mL | 4.3798 mL |
50 mM | 0.035 mL | 0.1752 mL | 0.3504 mL | 0.7008 mL | 0.876 mL |
100 mM | 0.0175 mL | 0.0876 mL | 0.1752 mL | 0.3504 mL | 0.438 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- CGP 39551
Catalog No.:BCC7053
CAS No.:127910-32-1
- CGP 37849
Catalog No.:BCC7078
CAS No.:127910-31-0
- C-type natriuretic peptide (1-22) (human, rat, swine)
Catalog No.:BCC6033
CAS No.:127869-51-6
- Saquinavir
Catalog No.:BCC1921
CAS No.:127779-20-8
- Dryocrassin ABBA
Catalog No.:BCN6276
CAS No.:12777-70-7
- 2'-O-Methylbroussonin A
Catalog No.:BCN7318
CAS No.:127757-13-5
- SKF 97541
Catalog No.:BCC6626
CAS No.:127729-35-5
- Radicicol
Catalog No.:BCC2131
CAS No.:12772-57-5
- (2R)-5,7-Dimethoxyflavanone
Catalog No.:BCN7806
CAS No.:1277188-85-8
- 9alpha,11-Dihydroxydrim-7-en-6-one
Catalog No.:BCN7225
CAS No.:127681-58-7
- PF-4989216
Catalog No.:BCC6468
CAS No.:1276553-09-3
- Cadherin Peptide, avian
Catalog No.:BCC1018
CAS No.:127650-08-2
- CU CPT 4a
Catalog No.:BCC6319
CAS No.:1279713-77-7
- Teucrin A
Catalog No.:BCC8259
CAS No.:12798-51-5
- Ursodiol
Catalog No.:BCC4945
CAS No.:128-13-2
- Pregnanolone
Catalog No.:BCC7736
CAS No.:128-20-1
- Sennoside B
Catalog No.:BCN1003
CAS No.:128-57-4
- Arvanil
Catalog No.:BCC7026
CAS No.:128007-31-8
- erythro-1-(4-Hydroxy-3-methoxyphenyl)propane-1,2-diol
Catalog No.:BCN1588
CAS No.:1280602-81-4
- Fmoc-D-Ser(tBu)-OH
Catalog No.:BCC3548
CAS No.:128107-47-1
- Escitalopram
Catalog No.:BCC4193
CAS No.:128196-01-0
- N-ArachidonylGABA
Catalog No.:BCC7186
CAS No.:128201-89-8
- (R,R)-2,6-Bis(4-phenyl-2-oxazolin-2-yl)pyridine
Catalog No.:BCC8397
CAS No.:128249-70-7
- GDC-0032
Catalog No.:BCC4066
CAS No.:1282512-48-4
Solution (31)P NMR Study of the Acid-Catalyzed Formation of a Highly Charged {U24Pp12} Nanocluster, [(UO2)24(O2)24(P2O7)12](48-), and Its Structural Characterization in the Solid State Using Single-Crystal Neutron Diffraction.[Pubmed:27322657]
J Am Chem Soc. 2016 Jul 13;138(27):8547-53.
The first neutron diffraction study of a single crystal containing uranyl peroxide nanoclusters is reported for pyrophosphate-functionalized Na44K6[(UO2)24(O2)24(P2O7)12][IO3]2.140H2O (1). Relative to earlier X-ray studies, neutron diffraction provides superior information concerning the positions of H atoms and lighter counterions. Hydrogen positions have been assigned and reveal an extensive network of H-bonds; notably, most O atoms present in the anionic cluster accept H-bonds from surrounding H2O molecules, and none of the surface-bound O atoms are protonated. The D4h symmetry of the cage is consistent with the presence of six encapsulated K cations, which appear to stabilize the lower symmetry variant of this cluster. (31)P NMR measurements demonstrate retention of this symmetry in solution, while in situ (31)P NMR studies suggest an acid-catalyzed mechanism for the assembly of 1 across a wide range of pH values.
Amino acid residues 24-31 but not palmitoylation of cysteines 30 and 45 are required for membrane anchoring of glutamic acid decarboxylase, GAD65.[Pubmed:8132714]
J Cell Biol. 1994 Mar;124(6):927-34.
The smaller isoform of the GABA synthesizing enzyme glutamic acid decarboxylase, GAD65, is synthesized as a soluble protein that undergoes post-translational modification(s) in the NH2-terminal region to become anchored to the membrane of small synaptic-like microvesicles in pancreatic beta cells, and synaptic vesicles in GABA-ergic neurons. A soluble hydrophilic form, a soluble hydrophobic form, and a hydrophobic firmly membrane-anchored form have been detected in beta cells. A reversible and hydroxylamine sensitive palmitoylation has been shown to distinguish the firmly membrane-anchored form from the soluble yet hydrophobic form, suggesting that palmitoylation of cysteines in the NH2-terminal region is involved in membrane anchoring. In this study we use site-directed mutagenesis to identify the first two cysteines in the NH2-terminal region, Cys 30 and Cys 45, as the sites of palmitoylation of the GAD65 molecule. Mutation of Cys 30 and Cys 45 to Ala results in a loss of palmitoylation but does not significantly alter membrane association of GAD65 in COS-7 cells. Deletion of the first 23 amino acids at the NH2 terminus of the GAD65 30/45A mutant also does not affect the hydrophobicity and membrane anchoring of the GAD65 protein. However, deletion of an additional eight amino acids at the NH2 terminus results in a protein which is hydrophilic and cytosolic. The results suggest that amino acids 24-31 are required for hydrophobic modification and/or targeting of GAD65 to membrane compartments, whereas palmitoylation of Cys 30 and Cys 45 may rather serve to orient or fold the protein at synaptic vesicle membranes.