5-Hydroxy-3',4',7-trimethoxyflavoneCAS# 29080-58-8 |
Quality Control & MSDS
Number of papers citing our products
Chemical structure
3D structure
Cas No. | 29080-58-8 | SDF | Download SDF |
PubChem ID | 5272653 | Appearance | Yellow powder |
Formula | C18H16O6 | M.Wt | 328.3 |
Type of Compound | Flavonoids | Storage | Desiccate at -20°C |
Solubility | Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc. | ||
Chemical Name | 2-(3,4-dimethoxyphenyl)-5-hydroxy-7-methoxychromen-4-one | ||
SMILES | COC1=C(C=C(C=C1)C2=CC(=O)C3=C(C=C(C=C3O2)OC)O)OC | ||
Standard InChIKey | HIXDQWDOVZUNNA-UHFFFAOYSA-N | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Description | 5-Hydroxy-3',4',7-trimethoxyflavone has anti-inflammatory, antibacterial and antifungal activities, it also shows moderate antitrypanosomal activity with MIC value of 19.0 ug/ml. 5-Hydroxy-3',4',7-trimethoxyflavone shows prominent inhibitory activity against soybean lipoxygenase, it can significantly inhibit nitric oxide production and induce reduction in the mRNA expressions of inducible nitric oxide synthase and cyclooxygenase-2 in lipopolysaccharide-induced inflammation in RAW 264.7 macrophages. |
Targets | LOX | TNF-α | IL Receptor | PGE | COX | NOS | Antifection |
In vitro | Protective effect of 5-hydroxy-3′,4′,7-trimethoxyflavone against inflammation induced by lipopolysaccharide in RAW 264.7 macrophage: in vitro study and in silico validation.[Reference: WebLink]Med. Chem. Res.,2016,25(9):1754-67.The herb Lippia nodiflora L. (Verbenaceae) has been documented to exhibit anti-inflammatory, antipyretic, antitussive, antidiabetic, anticancer, and antimelanogenesis properties. In the present study, we aimed at evaluating the anti-inflammatory activity of 5-Hydroxy-3',4',7-trimethoxyflavone, a flavonoid from L. nodiflora, using lipopolysaccharide induced inflammation in RAW 264.7 macrophages. Antifungal Flavonoids from Ballota glandulosissima.[Reference: WebLink]Pharm. Biol.,2008, 41(7):483-6.The flavonoids kumatakenin (1), pachypodol (2), 5-Hydroxy-3',4',7-trimethoxyflavone (3), velutin (4), salvigenin (5), retusin (6) and corymbosin (7) have been isolated from the aerial parts of Ballota glandulosissima Hub.-Mor & Patzak. Among them, 2–4 and 7 have not been reported previously in the genus Ballota. Anti-infective Activities of Secondary Metabolites from Vitex pinnata.[Reference: WebLink]J.Appl. Pharm. Sci.,2016,6(1):102-6.The phytochemical investigation of Vitex pinnata led to the isolation of a mixture of steroids β-sitosterol and stigmasterol (1a and 1b) and three known flavonoid identified as 5-Hydroxy-3',4',7-trimethoxyflavone(2), 5-hydroxy-7,4’-dimethoxy-flavone (3) and 5-hydroxy-3,3’,4’,7-tetramethoxyflavone (4). The structures of all isolated compounds were carried out by NMR and mass spectrometry. |
Kinase Assay | Anti-allergenic activity of polymethoxyflavones from Kaempferia parviflora.[Reference: WebLink]In vitro, fluorescence-quenching and computational studies on the interaction between lipoxygenase and 5-hydroxy-3',4',7-trimethoxyflavone from Lippia nodiflora L.[Pubmed: 26155726]J Recept Signal Transduct Res. 2015 Jul 9:1-9.The folk use of L. nodiflora was validated using the isolated natural compound, 5-Hydroxy-3',4',7-trimethoxyflavone (HTMF) by in vitro, fluorescence spectroscopic and molecular modeling studies with lipoxygenase (LOX), because LOX plays an essential role in inflammatory responses. Journal of Functional Foods, 2015,13:100-7.
The inhibitory effects of 13 polymethoxyflavones (PMFs) obtained from Kaempferia parviflora extracts were evaluated on RBL-2H3 cell degranulation. |
5-Hydroxy-3',4',7-trimethoxyflavone Dilution Calculator
5-Hydroxy-3',4',7-trimethoxyflavone Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 3.046 mL | 15.23 mL | 30.4599 mL | 60.9199 mL | 76.1499 mL |
5 mM | 0.6092 mL | 3.046 mL | 6.092 mL | 12.184 mL | 15.23 mL |
10 mM | 0.3046 mL | 1.523 mL | 3.046 mL | 6.092 mL | 7.615 mL |
50 mM | 0.0609 mL | 0.3046 mL | 0.6092 mL | 1.2184 mL | 1.523 mL |
100 mM | 0.0305 mL | 0.1523 mL | 0.3046 mL | 0.6092 mL | 0.7615 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- Pachymic acid
Catalog No.:BCN6347
CAS No.:29070-92-6
- Hexanorcucurbitacin D
Catalog No.:BCN7875
CAS No.:29065-05-2
- Matricin
Catalog No.:BCC8209
CAS No.:29041-35-8
- Bis(2-carboxyethyl)isocyanurate
Catalog No.:BCC8880
CAS No.:2904-40-7
- BMS 299897
Catalog No.:BCC2340
CAS No.:290315-45-6
- Glucosamine sulfate
Catalog No.:BCN5981
CAS No.:29031-19-4
- Daun02
Catalog No.:BCC1518
CAS No.:290304-24-4
- 3-Epiglochidiol
Catalog No.:BCN5193
CAS No.:29028-10-2
- Fmoc-Gly-OH
Catalog No.:BCC3498
CAS No.:29022-11-5
- Benzoyl-DL-valine
Catalog No.:BCC8864
CAS No.:2901-80-6
- Methyl reserpate
Catalog No.:BCN3489
CAS No.:2901-66-8
- Boc-Phg-OH
Catalog No.:BCC3311
CAS No.:2900-27-8
- Eupteleasaponin I
Catalog No.:BCN7839
CAS No.:290809-29-9
- Avosentan
Catalog No.:BCC1387
CAS No.:290815-26-8
- Cimiracemoside D
Catalog No.:BCN2789
CAS No.:290821-39-5
- Glipizide
Catalog No.:BCC3785
CAS No.:29094-61-9
- Pinoresinol dimethyl ether
Catalog No.:BCN6767
CAS No.:29106-36-3
- Procyanidin B2
Catalog No.:BCN6315
CAS No.:29106-49-8
- Guanfacine
Catalog No.:BCC5180
CAS No.:29110-47-2
- Guanfacine hydrochloride
Catalog No.:BCC1609
CAS No.:29110-48-3
- (+)-Affinisine
Catalog No.:BCN3520
CAS No.:2912-11-0
- 1-Methoxyberberine
Catalog No.:BCN7373
CAS No.:29133-52-6
- [Ala11,22,28]VIP
Catalog No.:BCC5754
CAS No.:291524-04-4
- Shegansu B
Catalog No.:BCN3381
CAS No.:291535-65-4
In vitro, fluorescence-quenching and computational studies on the interaction between lipoxygenase and 5-hydroxy-3',4',7-trimethoxyflavone from Lippia nodiflora L.[Pubmed:26155726]
J Recept Signal Transduct Res. 2015;35(6):569-77.
Lippia nodiflora L. is extensively used in traditional medicine for several medicinal purposes, including their use in inflammatory disorders. In this study, the folk use of L. nodiflora was validated using the isolated natural compound, 5-hydroxy-3',4',7-trimethoxyflavone (HTMF) by in vitro, fluorescence spectroscopic and molecular modeling studies with lipoxygenase (LOX), because LOX plays an essential role in inflammatory responses. In this perspective, the methanol extract and HTMF are shown to demonstrate prominent inhibitory activity against soybean lipoxygenase, with an IC50 value of 21.12 and 23.97 microg/ml, respectively. The data obtained from the spectroscopic method revealed that the quenching of intrinsic fluorescence of LOX is produced as a result of the complex formation of LOX-HTMF. The binding mode analysis of HTMF within the LOX enzyme suggested that hydrogen bond formation, hydrophobic interaction and pi-pi stacking could account for the binding of HTMF. Molecular dynamics results indicated the interaction of HTMF with LOX and the stability of ligand-enzyme complex was maintained throughout the simulation. The computational results are reliable with experimental facts and provided a good representation for understanding the binding mode of HTMF inside the active site of lipoxygenase enzyme.