6-Amino-4-hydroxy-2-naphthalenesulfonic acidCAS# 90-51-7 |
Quality Control & MSDS
Number of papers citing our products
Chemical structure
3D structure
Cas No. | 90-51-7 | SDF | Download SDF |
PubChem ID | 7022 | Appearance | Powder |
Formula | C10H9NO4S | M.Wt | 239 |
Type of Compound | N/A | Storage | Desiccate at -20°C |
Solubility | Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc. | ||
Chemical Name | 6-amino-4-hydroxynaphthalene-2-sulfonic acid | ||
SMILES | C1=CC(=CC2=C(C=C(C=C21)S(=O)(=O)O)O)N | ||
Standard InChIKey | HBZVNWNSRNTWPS-UHFFFAOYSA-N | ||
Standard InChI | InChI=1S/C10H9NO4S/c11-7-2-1-6-3-8(16(13,14)15)5-10(12)9(6)4-7/h1-5,12H,11H2,(H,13,14,15) | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
6-Amino-4-hydroxy-2-naphthalenesulfonic acid Dilution Calculator
6-Amino-4-hydroxy-2-naphthalenesulfonic acid Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 4.1841 mL | 20.9205 mL | 41.841 mL | 83.682 mL | 104.6025 mL |
5 mM | 0.8368 mL | 4.1841 mL | 8.3682 mL | 16.7364 mL | 20.9205 mL |
10 mM | 0.4184 mL | 2.0921 mL | 4.1841 mL | 8.3682 mL | 10.4603 mL |
50 mM | 0.0837 mL | 0.4184 mL | 0.8368 mL | 1.6736 mL | 2.0921 mL |
100 mM | 0.0418 mL | 0.2092 mL | 0.4184 mL | 0.8368 mL | 1.046 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- 3,4,5-Trimethoxycinnamic acid
Catalog No.:BCN5030
CAS No.:90-50-6
- Xanthone
Catalog No.:BCC6493
CAS No.:90-47-1
- 4-Methylumbelliferone
Catalog No.:BCN2563
CAS No.:90-33-5
- Xanthoxylin
Catalog No.:BCN4443
CAS No.:90-24-4
- beta-Rhamnocitrin
Catalog No.:BCN3293
CAS No.:90-19-7
- 1-Naphthol
Catalog No.:BCC8473
CAS No.:90-15-3
- Guaiacol
Catalog No.:BCN8311
CAS No.:90-05-1
- Salicyl alcohol
Catalog No.:BCN4442
CAS No.:90-01-7
- 3-(Hydroxymethyl)-3-nitro-1-(4-octylphenyl)-1,4-butanediol
Catalog No.:BCN1313
CAS No.:899822-99-2
- 3-Nitro-1-(4-octylphenyl)-1-propanone
Catalog No.:BCN2250
CAS No.:899822-97-0
- CC-930
Catalog No.:BCC1459
CAS No.:899805-25-5
- ML 348
Catalog No.:BCC5611
CAS No.:899713-86-1
- Lobelin
Catalog No.:BCN2157
CAS No.:90-69-7
- 4,4'-Bis(diethylamino)benzophenone
Catalog No.:BCC8659
CAS No.:90-93-7
- Boc-Ser(PO3Bzl2)-OH
Catalog No.:BCC3443
CAS No.:90013-45-9
- PIK-293
Catalog No.:BCC4994
CAS No.:900185-01-5
- PIK-294
Catalog No.:BCC4995
CAS No.:900185-02-6
- Agar (bacteriological)
Catalog No.:BCC1208
CAS No.:9002-18-0
- PFI 4
Catalog No.:BCC6484
CAS No.:900305-37-5
- Detomidine HCl
Catalog No.:BCC4346
CAS No.:90038-01-0
- Ylangenyl acetate
Catalog No.:BCN6704
CAS No.:90039-63-7
- Inulin
Catalog No.:BCC4789
CAS No.:9005-80-5
- PF-3274167
Catalog No.:BCC6451
CAS No.:900510-03-4
- AS-252424
Catalog No.:BCC4988
CAS No.:900515-16-4
Preparation of water-dispersible graphene by facile surface modification of graphite oxide.[Pubmed:21730750]
Nanotechnology. 2011 Jul 29;22(30):305710.
Water-dispersible graphene was prepared by reacting graphite oxide and 6-Amino-4-hydroxy-2-naphthalenesulfonic acid (ANS). X-ray diffraction study showed that the basal reflection (002) peak of graphite oxide was absent in the ANS-functionalized graphene (ANS-G), indicating crystal layer delamination. Ultraviolet-visible spectral data were recorded to assess the solubility of the ANS-G in water. Fourier transform infrared spectral analysis suggested the attachment of ANS molecules to the surface of graphene. Raman and x-ray photoelectron spectroscopy revealed that oxygen functionality in the graphite oxide had been removed during reduction. Atomic force microscopy found that the thickness of ANS-G in water was about 1.8 nm, much higher than that of single layer graphene. Thermal stability measurements also indicated successful removal of oxygen functionality from the graphite oxide and the attachment of thermally unstable ANS to the graphene surfaces. The electrical conductivity of ANS-G, determined by a four-point probe, was 145 S m(-1) at room temperature.