Home >> Research Area >> Inulin

Inulin

CAS# 9005-80-5

Inulin

2D Structure

Catalog No. BCC4789----Order now to get a substantial discount!

Product Name & Size Price Stock
Inulin: 5mg $35 In Stock
Inulin: 10mg Please Inquire In Stock
Inulin: 20mg Please Inquire Please Inquire
Inulin: 50mg Please Inquire Please Inquire
Inulin: 100mg Please Inquire Please Inquire
Inulin: 200mg Please Inquire Please Inquire
Inulin: 500mg Please Inquire Please Inquire
Inulin: 1000mg Please Inquire Please Inquire
Related Products

Quality Control of Inulin

3D structure

Package In Stock

Inulin

Number of papers citing our products

Chemical Properties of Inulin

Cas No. 9005-80-5 SDF Download SDF
PubChem ID 24763 Appearance Powder
Formula C228H382O191 M.Wt 6179.4
Type of Compound N/A Storage Desiccate at -20°C
Solubility Soluble to 104 mg/mL in Water
Chemical Name (2R,3R,4S,5S,6R)-2-[(2S,3S,4S,5R)-2-[[(2R,3S,4S,5R)-2-[[(2R,3S,4S,5R)-2-[[(2R,3S,4S,5R)-2-[[(2R,3S,4S,5R)-2-[[(2R,3S,4S,5R)-2-[[(2R,3S,4S,5R)-2-[[(2R,3S,4S,5R)-2-[[(2R,3S,4S,5R)-2-[[(2R,3S,4S,5R)-2-[[(2R,3S,4S,5R)-2-[[(2R,3S,4S,5R)-2-[[(2R,3S,4S,5R)-2-[[(2R,3S,4S,5R)-2-[[(2R,3S,4S,5R)-2-[[(2R,3S,4S,5R)-2-[[(2R,3S,4S,5R)-2-[[(2R,3S,4S,5R)-2-[[(2R,3S,4S,5R)-2-[[(2R,3S,4S,5R)-2-[[(2R,3S,4S,5R)-2-[[(2R,3S,4S,5R)-2-[[(2R,3S,4S,5R)-2-[[(2R,3S,4S,5R)-2-[[(2R,3S,4S,5R)-2-[[(2R,3S,4S,5R)-2-[[(2R,3S,4S,5R)-2-[[(2R,3S,4S,5R)-2-[[(2R,3S,4S,5R)-2-[[(2R,3S,4S,5R)-2-[[(2R,3S,4S,5R)-2-[[(2R,3S,4S,5R)-2-[[(2R,3S,4S,5R)-2-[[(2R,3S,4S,5R)-2-[[(2R,3S,4S,5R)-2-[[(2R,3S,4S,5R)-2-[[(2R,3S,4S,5R)-3,4-dihydroxy-2,5-bis(hydroxymethyl)oxolan-2-yl]oxymethyl]-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxymethyl]-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxymethyl]-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxymethyl]-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxymethyl]-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxymethyl]-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxymethyl]-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxymethyl]-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxymethyl]-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxymethyl]-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxymethyl]-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxymethyl]-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxymethyl]-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxymethyl]-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxymethyl]-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxymethyl]-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxymethyl]-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxymethyl]-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxymethyl]-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxymethyl]-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxymethyl]-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxymethyl]-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxymethyl]-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxymethyl]-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxymethyl]-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxymethyl]-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxymethyl]-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxymethyl]-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxymethyl]-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxymethyl]-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxymethyl]-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxymethyl]-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxymethyl]-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxymethyl]-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxymethyl]-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxymethyl]-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol
SMILES C(C1C(C(C(C(O1)OC2(C(C(C(O2)CO)O)O)COC3(C(C(C(O3)CO)O)O)COC4(C(C(C(O4)CO)O)O)COC5(C(C(C(O5)CO)O)O)COC6(C(C(C(O6)CO)O)O)COC7(C(C(C(O7)CO)O)O)COC8(C(C(C(O8)CO)O)O)COC9(C(C(C(O9)CO)O)O)COC1(C(C(C(O1)CO)O)O)COC1(C(C(C(O1)CO)O)O)COC1(C(C(C(O1)CO)O)O)COC1(C(C(C(O1)CO)O)O)COC1(C(C(C(O1)CO)O)O)COC1(C(C(C(O1)CO)O)O)COC1(C(C(C(O1)CO)O)O)COC1(C(C(C(O1)CO)O)O)COC1(C(C(C(O1)CO)O)O)COC1(C(C(C(O1)CO)O)O)COC1(C(C(C(O1)CO)O)O)COC1(C(C(C(O1)CO)O)O)COC1(C(C(C(O1)CO)O)O)COC1(C(C(C(O1)CO)O)O)COC1(C(C(C(O1)CO)O)O)COC1(C(C(C(O1)CO)O)O)COC1(C(C(C(O1)CO)O)O)COC1(C(C(C(O1)CO)O)O)COC1(C(C(C(O1)CO)O)O)COC1(C(C(C(O1)CO)O)O)COC1(C(C(C(O1)CO)O)O)COC1(C(C(C(O1)CO)O)O)COC1(C(C(C(O1)CO)O)O)COC1(C(C(C(O1)CO)O)O)COC1(C(C(C(O1)CO)O)O)COC1(C(C(C(O1)CO)O)O)COC1(C(C(C(O1)CO)O)O)COC1(C(C(C(O1)CO)O)O)COC1(C(C(C(O1)CO)O)O)CO)O)O)O)O
Standard InChIKey JYJIGFIDKWBXDU-MNNPPOADSA-N
Standard InChI InChI=1S/C228H382O191/c229-1-76-114(268)152(306)153(307)191(381-76)419-228(190(344)151(305)113(38-266)418-228)75-380-227(189(343)150(304)112(37-265)417-227)74-379-226(188(342)149(303)111(36-264)416-226)73-378-225(187(341)148(302)110(35-263)415-225)72-377-224(186(340)147(301)109(34-262)414-224)71-376-223(185(339)146(300)108(33-261)413-223)70-375-222(184(338)145(299)107(32-260)412-222)69-374-221(183(337)144(298)106(31-259)411-221)68-373-220(182(336)143(297)105(30-258)410-220)67-372-219(181(335)142(296)104(29-257)409-219)66-371-218(180(334)141(295)103(28-256)408-218)65-370-217(179(333)140(294)102(27-255)407-217)64-369-216(178(332)139(293)101(26-254)406-216)63-368-215(177(331)138(292)100(25-253)405-215)62-367-214(176(330)137(291)99(24-252)404-214)61-366-213(175(329)136(290)98(23-251)403-213)60-365-212(174(328)135(289)97(22-250)402-212)59-364-211(173(327)134(288)96(21-249)401-211)58-363-210(172(326)133(287)95(20-248)400-210)57-362-209(171(325)132(286)94(19-247)399-209)56-361-208(170(324)131(285)93(18-246)398-208)55-360-207(169(323)130(284)92(17-245)397-207)54-359-206(168(322)129(283)91(16-244)396-206)53-358-205(167(321)128(282)90(15-243)395-205)52-357-204(166(320)127(281)89(14-242)394-204)51-356-203(165(319)126(280)88(13-241)393-203)50-355-202(164(318)125(279)87(12-240)392-202)49-354-201(163(317)124(278)86(11-239)391-201)48-353-200(162(316)123(277)85(10-238)390-200)47-352-199(161(315)122(276)84(9-237)389-199)46-351-198(160(314)121(275)83(8-236)388-198)45-350-197(159(313)120(274)82(7-235)387-197)44-349-196(158(312)119(273)81(6-234)386-196)43-348-195(157(311)118(272)80(5-233)385-195)42-347-194(156(310)117(271)79(4-232)384-194)41-346-193(155(309)116(270)78(3-231)383-193)40-345-192(39-267)154(308)115(269)77(2-230)382-192/h76-191,229-344H,1-75H2/t76-,77-,78-,79-,80-,81-,82-,83-,84-,85-,86-,87-,88-,89-,90-,91-,92-,93-,94-,95-,96-,97-,98-,99-,100-,101-,102-,103-,104-,105-,106-,107-,108-,109-,110-,111-,112-,113-,114-,115-,116-,117-,118-,119-,120-,121-,122-,123-,124-,125-,126-,127-,128-,129-,130-,131-,132-,133-,134-,135-,136-,137-,138-,139-,140-,141-,142-,143-,144-,145-,146-,147-,148-,149-,150-,151-,152+,153-,154+,155+,156+,157+,158+,159+,160+,161+,162+,163+,164+,165+,166+,167+,168+,169+,170+,171+,172+,173+,174+,175+,176+,177+,178+,179+,180+,181+,182+,183+,184+,185+,186+,187+,188+,189+,190+,191-,192-,193-,194-,195-,196-,197-,198-,199-,200-,201-,202-,203-,204-,205-,206-,207-,208-,209-,210-,211-,212-,213-,214-,215-,216-,217-,218-,219-,220-,221-,222-,223-,224-,225-,226-,227-,228+/m1/s1
General tips For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months.
We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months.
Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it.
About Packaging 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial.
2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial.
3. Try to avoid loss or contamination during the experiment.
Shipping Condition Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request.

Inulin Dilution Calculator

Concentration (start)
x
Volume (start)
=
Concentration (final)
x
Volume (final)
 
 
 
C1
V1
C2
V2

calculate

Inulin Molarity Calculator

Mass
=
Concentration
x
Volume
x
MW*
 
 
 
g/mol

calculate

Preparing Stock Solutions of Inulin

1 mg 5 mg 10 mg 20 mg 25 mg
1 mM 0.1618 mL 0.8091 mL 1.6183 mL 3.2366 mL 4.0457 mL
5 mM 0.0324 mL 0.1618 mL 0.3237 mL 0.6473 mL 0.8091 mL
10 mM 0.0162 mL 0.0809 mL 0.1618 mL 0.3237 mL 0.4046 mL
50 mM 0.0032 mL 0.0162 mL 0.0324 mL 0.0647 mL 0.0809 mL
100 mM 0.0016 mL 0.0081 mL 0.0162 mL 0.0324 mL 0.0405 mL
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations.

Organizitions Citing Our Products recently

 
 
 

Calcutta University

University of Minnesota

University of Maryland School of Medicine

University of Illinois at Chicago

The Ohio State University

University of Zurich

Harvard University

Colorado State University

Auburn University

Yale University

Worcester Polytechnic Institute

Washington State University

Stanford University

University of Leipzig

Universidade da Beira Interior

The Institute of Cancer Research

Heidelberg University

University of Amsterdam

University of Auckland
TsingHua University
TsingHua University
The University of Michigan
The University of Michigan
Miami University
Miami University
DRURY University
DRURY University
Jilin University
Jilin University
Fudan University
Fudan University
Wuhan University
Wuhan University
Sun Yat-sen University
Sun Yat-sen University
Universite de Paris
Universite de Paris
Deemed University
Deemed University
Auckland University
Auckland University
The University of Tokyo
The University of Tokyo
Korea University
Korea University

Background on Inulin

Inulin

Featured Products
New Products
 

References on Inulin

Molecular and biopharmaceutical investigation of alginate-inulin synbiotic coencapsulation of probiotic to target the colon.[Pubmed:28350268]

J Microencapsul. 2017 Mar;34(2):171-184.

Colon targeting, as a site-specific delivery for oral formulation, remains a major challenge, especially for sensitive bioactive components such as therapeutic forms of phages, live attenuated virus and prebiotics-probiotics association. Synbiotics could be used to protect encapsulated probiotics during the gastrointestinal tract and control their release in the colon. To achieve these goals, effective prebiotics, such as Inulin, could be combined with alginate - the most exploited polymer used for probiotic encapsulation - in the form of beads. This work aimed to study the biopharmaceutical behaviour of alginate beads (A) and Inulin-alginate beads of different Inulin concentrations (5 or 20%) in 2% alginate (AI5, AI20). Beads were loaded with three probiotic strains (Pediococcus acidilactici Ul5, Lactobacillus reuteri and Lactobacillus salivarius). Dissolution of beads was studied by USP4 under conditions simulating the gastrointestinal condition. The survival rates of the bacterial strains were measured by a specific qPCR bacterial count. Mucoadhesiveness of beads was studied by an ex vivo method using intestinal mucosa. To understand the behaviour of each formulation, the ultrastructure of the polymeric network was studied using scanning electron microscopy (SEM). Molecular interactions between alginate and Inulin were studied by Fourier transform infra-red spectroscopy (FTIR). Dissolution results suggested that the presence of Inulin in beads provided more protection for the tested bacterial strains against the acidic pH. AI5 was the most effective formulation to deliver probiotics to the colon simulation conditions. FTIR and SEM investigations explained the differences in behaviour of each formula. The developed symbiotic form provided a promising matrix for the development of colonic controlled release systems.

Utilization of inulin-containing waste in industrial fermentations to produce biofuels and bio-based chemicals.[Pubmed:28341907]

World J Microbiol Biotechnol. 2017 Apr;33(4):78.

Inulins are polysaccharides that belong to an important class of carbohydrates known as fructans and are used by many plants as a means of storing energy. Inulins contain 20 to several thousand fructose units joined by beta-2,1 glycosidic bonds, typically with a terminal glucose unit. Plants with high concentrations of Inulin include: agave, asparagus, coffee, chicory, dahlia, dandelion, garlic, globe artichoke, Jerusalem artichoke, jicama, onion, wild yam, and yacon. To utilize Inulin as its carbon and energy source directly, a microorganism requires an extracellular Inulinase to hydrolyze the glycosidic bonds to release fermentable monosaccharides. Inulinase is produced by many microorganisms, including species of Aspergillus, Kluyveromyces, Penicillium, and Pseudomonas. We review various Inulinase-producing microorganisms and Inulin feedstocks with potential for industrial application as well as biotechnological efforts underway to develop sustainable practices for the disposal of residues from processing Inulin-containing crops. A multi-stage biorefinery concept is proposed to convert cellulosic and Inulin-containing waste produced at crop processing operations to valuable biofuels and bioproducts using Kluyveromyces marxianus, Yarrowia lipolytica, Rhodotorula glutinis, and Saccharomyces cerevisiae as well as thermochemical treatments.

Effects of inulin with different degree of polymerization on gelatinization and retrogradation of wheat starch.[Pubmed:28372184]

Food Chem. 2017 Aug 15;229:35-43.

The effects of three types of Inulin, including FS (DP/=23), on the gelatinization and retrogradation characteristics of wheat starch were investigated. As the concentration of Inulin added into starch increased, the gelatinization temperature increased whereas the breakdown value decreased, and the value of setback first decreased and then increased slightly. The three types of Inulin with lower concentrations (<15%) all showed obvious suppression effects on the short-term retrogradation of wheat starch. After 7days of storage, the three types of Inulin showed a significant suppression of starch retrogradation in the addition range of 5-7.5%. They can all inhibit amylose retrogradation, but accelerate amylopectin retrogradation. Inulin with lower DP has stronger effects on the starch retrogradation. Generally, the three types of Inulin can all retard the retrogradation performance of wheat starch to some extent in the long-term storage.

Dietary fat content modulates the hypolipidemic effect of dietary inulin in rats.[Pubmed:28371380]

Mol Nutr Food Res. 2017 Aug;61(8).

SCOPE: Dietary fat content (low versus high fat) may modulate the serum lipid-lowering effect of high-performance (HP)-Inulin. This study investigated the effect of dietary HP-Inulin on metabolism in rats fed a low- or high-fat diet. METHODS AND RESULTS: Rats were fed a diet of 5% fat with 5% cellulose or 5% HP-Inulin (average degree of polymerization = 24) (low-fat diet) or of 20% fat with 5% cellulose or 5% HP-Inulin (high-fat diet) for 28 days. Total, HDL, and non-HDL cholesterols, and triglyceride concentrations in the serum were measured along with total lipid content of liver and feces. Hepatic triglyceride and cholesterol, and fecal neutral and acidic sterol concentrations in total lipid were assessed. In addition, cecum SCFA levels and bacterial profiles were determined. The hypolipidemic effect of HP-Inulin differed depending on dietary fat content (5% versus 20%). Specifically, 5% Inulin instead of cellulose in a semi-purified diet significantly reduced serum lipid levels in rats fed a high-fat diet, which was strongly associated with increased total lipid and neutral sterol excretion. CONCLUSION: Dietary fat content modulates the hypolipidemic effect of dietary Inulin.

Description

Inulin is a water soluble storage polysaccharide and belongs to a group of non-digestible carbohydrates, fructan. Inulin is from plants of the Compositae and Lilialiaceaes families, often used as a prebiotic, fat replacer, sugar replacer, texture modifier, plays beneficial role in gastric .

Keywords:

Inulin,9005-80-5,Natural Products, buy Inulin , Inulin supplier , purchase Inulin , Inulin cost , Inulin manufacturer , order Inulin , high purity Inulin

Online Inquiry for:

      Fill out the information below

      • Size:Qty: - +

      * Required Fields

                                      Result: