8-Azabicyclo-3.2.1-octan-3-olCAS# 501-33-7 |
Quality Control & MSDS
Number of papers citing our products
Chemical structure
3D structure
Cas No. | 501-33-7 | SDF | Download SDF |
PubChem ID | 68147 | Appearance | Cryst. |
Formula | C7H13NO | M.Wt | 127.19 |
Type of Compound | Alkaloids | Storage | Desiccate at -20°C |
Solubility | Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc. | ||
Chemical Name | 8-azabicyclo[3.2.1]octan-3-ol | ||
SMILES | C1CC2CC(CC1N2)O | ||
Standard InChIKey | YYMCYJLIYNNOMK-UHFFFAOYSA-N | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
In vitro | Neuroprotective 3-(piperidinyl-1)-chroman-4,7-diol and 1-(4-hydroxyphenyl)-2-(piperidinyl-1)-alkanol derivatives.[Reference: WebLink]PCT No. PCT/IB95/00380 Sec. 371 Date Feb. 13, 1996 Sec. 102(e)
|
8-Azabicyclo-3.2.1-octan-3-ol Dilution Calculator
8-Azabicyclo-3.2.1-octan-3-ol Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 7.8623 mL | 39.3113 mL | 78.6225 mL | 157.2451 mL | 196.5563 mL |
5 mM | 1.5725 mL | 7.8623 mL | 15.7245 mL | 31.449 mL | 39.3113 mL |
10 mM | 0.7862 mL | 3.9311 mL | 7.8623 mL | 15.7245 mL | 19.6556 mL |
50 mM | 0.1572 mL | 0.7862 mL | 1.5725 mL | 3.1449 mL | 3.9311 mL |
100 mM | 0.0786 mL | 0.3931 mL | 0.7862 mL | 1.5725 mL | 1.9656 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- Kojic acid
Catalog No.:BCN6543
CAS No.:501-30-4
- Cardanol (C15:1)
Catalog No.:BCN3751
CAS No.:501-26-8
- Trans-caffeic acid
Catalog No.:BCN3462
CAS No.:501-16-6
- Securinol A
Catalog No.:BCN6987
CAS No.:5008-48-0
- GANT61
Catalog No.:BCC1090
CAS No.:500579-04-4
- Rilpivirine
Catalog No.:BCC1897
CAS No.:500287-72-9
- 3,5-Dimethoxyphenol
Catalog No.:BCN7198
CAS No.:500-99-2
- Olivetol
Catalog No.:BCN4629
CAS No.:500-66-3
- Rhapontigenin
Catalog No.:BCN3515
CAS No.:500-65-2
- Kawain
Catalog No.:BCN3564
CAS No.:500-64-1
- Yangonin
Catalog No.:BCN3565
CAS No.:500-62-9
- Convolamine
Catalog No.:BCN1905
CAS No.:500-56-1
- Resveratrol
Catalog No.:BCN5607
CAS No.:501-36-0
- Hydrocinnamic acid
Catalog No.:BCN4057
CAS No.:501-52-0
- 2-(4-Hydroxyphenyl)ethanol
Catalog No.:BCN5608
CAS No.:501-94-0
- Rhododendrol
Catalog No.:BCN5609
CAS No.:501-96-2
- Phloretic acid
Catalog No.:BCN2950
CAS No.:501-97-3
- 2,3-Di-O-methylthiomethyleuscaphic acid
Catalog No.:BCN5610
CAS No.:
- Pilosol A
Catalog No.:BCC9121
CAS No.:501086-15-3
- 5,6,7,4'-Tetrahydroxyflavanone 6,7-diglucoside
Catalog No.:BCN1434
CAS No.:501434-65-7
- BI-D1870
Catalog No.:BCC5030
CAS No.:501437-28-1
- NS 1738
Catalog No.:BCC7535
CAS No.:501684-93-1
- NSC 74859
Catalog No.:BCC3701
CAS No.:501919-59-1
- PNU-120596
Catalog No.:BCC4581
CAS No.:501925-31-1
Pharmacological profile of the NOP agonist and cough suppressing agent SCH 486757 (8-[Bis(2-Chlorophenyl)Methyl]-3-(2-Pyrimidinyl)-8-Azabicyclo[3.2.1]Octan-3-Ol) in preclinical models.[Pubmed:20006596]
Eur J Pharmacol. 2010 Mar 25;630(1-3):112-20.
We describe the pharmacological and pharmacokinetic profiles of SCH 486757, a nociceptin/orphanin FQ peptide (NOP) receptor agonist that has recently entered human clinical trials for cough. SCH 486757 selectively binds human NOP receptor (K(i)=4.6+/-0.61nM) over classical opioid receptors. In a guinea pig capsaicin cough model, SCH 486757 (0.01-1mg/kg) suppressed cough at 2, 4, and 6h post oral administration with a maximum efficacy occurring at 4h equivalent to codeine, hydrocodone, dextromethorphan and baclofen. The antitussive effects of SCH 486757 (3.0mg/kg, p.o.) was blocked by the NOP receptor antagonist J113397 (12mg/kg, i.p.) but not by naltrexone (10mg/kg, p.o.). SCH 486757 does not produce tolerance to its antitussive activity after a 5-day BID dosing regimen. After acute and chronic dosing paradigms, SCH 486757 (1mg/kg) inhibited capsaicin-evoked coughing by 46+/-9% and 40+/-11%, respectively. In a feline mechanically-evoked cough model, SCH 486757 produces a maximum inhibition of cough and expiratory abdominal electromyogram amplitude of 59 and 61%, respectively. SCH 486757 did not significantly affect inspiratory electromyogram amplitude. We examined the abuse potential of SCH 486757 (10mg/kg, p.o.) in a rat conditioned place preference procedure which is sensitive to classical drugs of abuse, such as amphetamine and morphine. SCH 486757 was without effect in this model. Finally, SCH 486757 displays a good oral pharmacokinetic profile in the guinea pig, rat and dog. We conclude that SCH 486757 has a favorable antitussive profile in preclinical animal models.
Structure-activity relationships for a novel series of dopamine D2-like receptor ligands based on N-substituted 3-aryl-8-azabicyclo[3.2.1]octan-3-ol.[Pubmed:18774793]
J Med Chem. 2008 Oct 9;51(19):6095-109.
Discovering dopamine D2-like receptor subtype-selective ligands has been a focus of significant investigation. The D2R-selective antagonist 3-[4-(4-chlorophenyl)-4-hydroxypiperidinyl]methylindole (1, L741,626; K(i)(D2R/D3R) = 11.2:163 nM) has previously provided a lead template for chemical modification. Herein, analogues have been synthesized where the piperidine was replaced by a tropane ring that reversed the selectivity seen in the parent compound, in human hD2(L)R- or hD3R-transfected HEK 293 cells (31, K(i)(D2R/D3R) = 33.4:15.5 nM). Further exploration of both N-substituted and aryl ring-substituted analogues resulted in the discovery of several high affinity D2R/D3R ligands with 3-benzofurylmethyl-substituents (e.g., 45, K(i)(D2R/D3R) = 1.7:0.34 nM) that induced high affinity not achieved in similarly N-substituted piperidine analogues and significantly (470-fold) improved D3R binding affinity compared to the parent ligand 1. X-ray crystallographic data revealed a distinctive spatial arrangement of pharmacophoric elements in the piperidinol vs tropine analogues, providing clues for the diversity in SAR at the D2 and D3 receptor subtypes.
Two isomers of 2,4-dibenzyl-8-azabicyclo[3.2.1]octan-3-ol.[Pubmed:14712033]
Acta Crystallogr C. 2004 Jan;60(Pt 1):o9-11. Epub 2003 Dec 6.
The crystal structures of the title compounds, 2 alpha,4 alpha-dibenzyl-3 alpha-tropanol (2 alpha,4 alpha-dibenzyl-8-methyl-8-azabicyclo[3.2.1]octan-3 alpha-ol), C(22)H(27)NO, (I), and 2 alpha,4 alpha-dibenzyl-3 beta-tropanol (2 alpha,4 alpha-dibenzyl-8-methyl-8-azabicyclo[3.2.1]octan-3 beta-ol), C(22)H(27)NO, (II), show that both compounds have a piperidine ring in a chair conformation and a pyrrolidine ring in an envelope conformation. Isomer (I) is asymmetric, the benzyl groups having different orientations, whereas isomer (II) is mirror symmetric, and the N and O atoms, the C atom attached to the hydroxy group, and the methyl C atom attached to the N atom lie on the mirror plane. In the crystal structures of both (I) and (II), the molecules are linked together by intermolecular O-H...N hydrogen bonds to form chains that run parallel to the a direction in (I) and parallel to b in (II).
The anxiolytic-like effects of the novel, orally active nociceptin opioid receptor agonist 8-[bis(2-methylphenyl)methyl]-3-phenyl-8-azabicyclo[3.2.1]octan-3-ol (SCH 221510).[Pubmed:18492950]
J Pharmacol Exp Ther. 2008 Aug;326(2):672-82.
Orphanin FQ/nociceptin (OFQ/N) is the endogenously occurring peptide ligand for the nociceptin opioid receptor (NOP) that produces anxiolytic-like effects in mice and rats. The present study assessed the anxiolytic-like activity of 8-[bis(2-methylphenyl)-methyl]-3-phenyl-8-azabicyclo[3.2.1]octan-3-ol (SCH 221510), a novel potent piperidine NOP agonist (EC(50) = 12 nM) that binds with high affinity (K(i) = 0.3 nM) and functional selectivity (>50-fold over the mu-, kappa-, and delta-opioid receptors). The anxiolytic-like activity and side-effect profile of SCH 221510 were assessed in a variety of models and the benzodiazepine, chlordiazepoxide (CDP), was included for comparison. The effects of chronic dosing of SCH 221510 were also assessed. Furthermore, the specificity of the anxiolytic-like effect of SCH 221510 was investigated with the NOP receptor antagonist 1-[(3R,4R)-1-cyclooctylmethyl-3-hydroxymethyl-4-piperidyl]-3-ethyl-1,3-dihydro-2H -benzimidazol-2-one (J-113397) and the opioid receptor antagonist naltrexone. Like CDP (1-30 mg/kg i.p.), SCH 221510 (1-30 mg/kg p.o.) produced anxiolytic-like effects in the elevated plus-maze (rat and gerbil), Vogel conflict (rat), conditioned lick suppression (rat), fear-potentiated startle (rat), and pup separation-induced vocalization (guinea pig) assays. In the Vogel conflict, the anxiolytic-like effect of SCH 221510 (10 mg/kg) was attenuated by J-113397 (3-10 mg/kg p.o.), but not naltrexone (3-30 mg/kg i.p.). Additionally, the anxiolytic-like effects of SCH 221510 did not change appreciably following 14-day b.i.d. dosing in rats (10 mg/kg). Furthermore, unlike CDP, SCH 221510 (3-30 mg/kg) produced anxiolytic-like activity at doses that did not disrupt overt behavior. Collectively, these data suggest that NOP agonists such as SCH 221510 may have an anxiolytic-like profile similar to benzodiazepines, with a reduced side-effect liability.