Ac-Met-OHCAS# 65-82-7 |
- Amyloid β-Protein (1-15)
Catalog No.:BCC1003
CAS No.:183745-81-5
- Beta-Amyloid (1-11)
Catalog No.:BCC1002
CAS No.:190436-05-6
Quality Control & MSDS
Number of papers citing our products
Chemical structure
3D structure
Cas No. | 65-82-7 | SDF | Download SDF |
PubChem ID | 448580 | Appearance | Powder |
Formula | C7H13NO3S | M.Wt | 191.2 |
Type of Compound | N/A | Storage | Desiccate at -20°C |
Synonyms | N-Acetyl-L-methionine | ||
Solubility | Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc. | ||
Chemical Name | (2S)-2-acetamido-4-methylsulfanylbutanoic acid | ||
SMILES | CC(=O)NC(CCSC)C(=O)O | ||
Standard InChIKey | XUYPXLNMDZIRQH-LURJTMIESA-N | ||
Standard InChI | InChI=1S/C7H13NO3S/c1-5(9)8-6(7(10)11)3-4-12-2/h6H,3-4H2,1-2H3,(H,8,9)(H,10,11)/t6-/m0/s1 | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Ac-Met-OH Dilution Calculator
Ac-Met-OH Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 5.2301 mL | 26.1506 mL | 52.3013 mL | 104.6025 mL | 130.7531 mL |
5 mM | 1.046 mL | 5.2301 mL | 10.4603 mL | 20.9205 mL | 26.1506 mL |
10 mM | 0.523 mL | 2.6151 mL | 5.2301 mL | 10.4603 mL | 13.0753 mL |
50 mM | 0.1046 mL | 0.523 mL | 1.046 mL | 2.0921 mL | 2.6151 mL |
100 mM | 0.0523 mL | 0.2615 mL | 0.523 mL | 1.046 mL | 1.3075 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
Ac-Met-OH
- Thymine
Catalog No.:BCN8334
CAS No.:65-71-4
- Acridine Orange hydrochloride
Catalog No.:BCC8006
CAS No.:65-61-2
- 4-Aminosalicylic acid
Catalog No.:BCC8691
CAS No.:65-49-6
- Cytidine
Catalog No.:BCN3415
CAS No.:65-46-3
- Nicotine Difartrate
Catalog No.:BCC3821
CAS No.:65-31-6
- Gallamine Triethiodide
Catalog No.:BCC4576
CAS No.:65-29-2
- Phentolamine Mesylate
Catalog No.:BCC4353
CAS No.:65-28-1
- Pyridoxine
Catalog No.:BCC8355
CAS No.:65-23-6
- Yohimbine Hydrochloride
Catalog No.:BCN6268
CAS No.:65-19-0
- 1-Testosterone
Catalog No.:BCC8474
CAS No.:65-06-5
- 7alpha-Hydroxystigmasterol
Catalog No.:BCN4194
CAS No.:64998-19-2
- Pifithrin-μ
Catalog No.:BCC2412
CAS No.:64984-31-2
- Benzoic acid
Catalog No.:BCN4201
CAS No.:65-85-0
- Orotic acid
Catalog No.:BCC4162
CAS No.:65-86-1
- 1,5,6-Trihydroxy-3,7-dimethoxyxanthone
Catalog No.:BCN7347
CAS No.:65008-02-8
- 3,8-Dihydroxy-2,4,6-trimethoxyxanthone
Catalog No.:BCN1387
CAS No.:65008-17-5
- VGX-1027
Catalog No.:BCC5203
CAS No.:6501-72-0
- Boc-His(Tos)-OH.DCHA
Catalog No.:BCC2605
CAS No.:65057-34-3
- Nimorazole
Catalog No.:BCC5253
CAS No.:6506-37-2
- 6-Amino-2-methylquinoline
Catalog No.:BCC8759
CAS No.:65079-19-8
- L-152,804
Catalog No.:BCC7041
CAS No.:6508-43-6
- Sulfameter
Catalog No.:BCC4855
CAS No.:651-06-9
- Nanchangmycin
Catalog No.:BCC4970
CAS No.:65101-87-3
- NGR peptide
Catalog No.:BCC4418
CAS No.:651328-78-8
Cisplatin mediates selective downstream hydrolytic cleavage of Met-(Gly)(n)-His segments (n=1,2) in methionine- and histidine-containing peptides: the role of ammine loss trans to the initial Pt-S(Met) anchor in facilitating amide hydrolysis.[Pubmed:16806482]
J Inorg Biochem. 2006 Sep;100(9):1506-13.
The pH- and time-dependent reactions of the antitumor drug cisplatin, cis-[PtCl(2)(NH(3))(2)], with the methionine- and histidine-containing pentapeptides Ac-Met-Gly-His-Gly-Gly-OH, Ac-Met-Gly-Gly-His-Gly-OH and Ac-Gly-Met-Gly-His-Gly-OH (Gly=glycyl, Met=L-methionyl, His=L-histidyl) at 313K have been investigated by high performance liquid chromatography, mass spectrometry and nuclear magnetic resonance. Cisplatin mediates a rapid "downstream" hydrolytic cleavage of the Met-Gly amide bond in weakly acid solution (pH < or =5) for all three peptides, leading to release of H-Gly-His-Gly-Gly-OH, H-Gly-Gly-His-Gly-OH and H-Gly-His-Gly-OH, respectively, and formation of kappa(2)S,N(M) chelate complexes of the methionine-containing residuals Ac-Met-OH or Ac-Gly-Met-OH. An alternative reaction pathway affords tridentate kappa(3)S,N(M),N(imidazole) macrochelates of the original pentapeptide following ammine loss. The downstream cleavage pathway is competitive with the likewise cisplatin-mediated upstream cleavage of the Ac-Gly linkage in the pentapeptide Ac-Gly-Met-Gly-His-Gly-OH. This leads to formation of both the kappa(3)S,N(M),N(G1) complex of H-Gly-Met-Gly-His-Gly-OH due to upstream cleavage and the analogous tridentate complex for H-Gly-Met-OH due to initial downstream loss of H-Gly-His-Gly-OH followed by upstream loss of acetic acid. As downstream cleavage is not observed for Ac-(Gly)(2)-Met-(Gly)(2)-OH under similar conditions, it may be concluded that rapid histidine imidazole substitution of the ammine ligand in trans-position to an anchoring methionine S atom must assist hydrolytic cleavage of the Met-Gly amide bond.