Home >> Research Area >>Metabolism>>PPAR>> CP 775146

CP 775146

CAS# 702680-17-9

CP 775146

2D Structure

Catalog No. BCC7881----Order now to get a substantial discount!

Product Name & Size Price Stock
CP 775146: 5mg $127 In Stock
CP 775146: 10mg Please Inquire In Stock
CP 775146: 20mg Please Inquire Please Inquire
CP 775146: 50mg Please Inquire Please Inquire
CP 775146: 100mg Please Inquire Please Inquire
CP 775146: 200mg Please Inquire Please Inquire
CP 775146: 500mg Please Inquire Please Inquire
CP 775146: 1000mg Please Inquire Please Inquire
Related Products
  • AZ20

    Catalog No.:BCC1389
    CAS No.:1233339-22-4
  • ETP-46464

    Catalog No.:BCC3913
    CAS No.:1345675-02-6
  • KU 55933

    Catalog No.:BCC2475
    CAS No.:587871-26-9
  • CGK733

    Catalog No.:BCC3911
    CAS No.:905973-89-9
  • KU-60019

    Catalog No.:BCC3699
    CAS No.:925701-49-1

Quality Control of CP 775146

3D structure

Package In Stock

CP 775146

Number of papers citing our products

Chemical Properties of CP 775146

Cas No. 702680-17-9 SDF Download SDF
PubChem ID 46911787 Appearance Powder
Formula C26H33NO4 M.Wt 423.54
Type of Compound N/A Storage Desiccate at -20°C
Solubility Soluble to 100 mM in DMSO
Chemical Name sodium;2-methyl-2-[3-[(3S)-1-[2-(4-propan-2-ylphenyl)acetyl]piperidin-3-yl]phenoxy]propanoate
SMILES CC(C)C1=CC=C(C=C1)CC(=O)N2CCCC(C2)C3=CC(=CC=C3)OC(C)(C)C(=O)[O-].[Na+]
Standard InChIKey YQAGREGJJZRFDN-VZYDHVRKSA-M
Standard InChI InChI=1S/C26H33NO4.Na/c1-18(2)20-12-10-19(11-13-20)15-24(28)27-14-6-8-22(17-27)21-7-5-9-23(16-21)31-26(3,4)25(29)30;/h5,7,9-13,16,18,22H,6,8,14-15,17H2,1-4H3,(H,29,30);/q;+1/p-1/t22-;/m1./s1
General tips For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months.
We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months.
Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it.
About Packaging 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial.
2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial.
3. Try to avoid loss or contamination during the experiment.
Shipping Condition Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request.

Biological Activity of CP 775146

DescriptionSelective, high affinity PPARα agonist (Ki values are 24.5 nM for PPARα and >10 μM for PPARβ and PPARγ in vitro). Exhibits hypolipidemic activity in vivo.

CP 775146 Dilution Calculator

Concentration (start)
x
Volume (start)
=
Concentration (final)
x
Volume (final)
 
 
 
C1
V1
C2
V2

calculate

CP 775146 Molarity Calculator

Mass
=
Concentration
x
Volume
x
MW*
 
 
 
g/mol

calculate

Preparing Stock Solutions of CP 775146

1 mg 5 mg 10 mg 20 mg 25 mg
1 mM 2.3611 mL 11.8053 mL 23.6105 mL 47.221 mL 59.0263 mL
5 mM 0.4722 mL 2.3611 mL 4.7221 mL 9.4442 mL 11.8053 mL
10 mM 0.2361 mL 1.1805 mL 2.3611 mL 4.7221 mL 5.9026 mL
50 mM 0.0472 mL 0.2361 mL 0.4722 mL 0.9444 mL 1.1805 mL
100 mM 0.0236 mL 0.1181 mL 0.2361 mL 0.4722 mL 0.5903 mL
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations.

Organizitions Citing Our Products recently

 
 
 

Calcutta University

University of Minnesota

University of Maryland School of Medicine

University of Illinois at Chicago

The Ohio State University

University of Zurich

Harvard University

Colorado State University

Auburn University

Yale University

Worcester Polytechnic Institute

Washington State University

Stanford University

University of Leipzig

Universidade da Beira Interior

The Institute of Cancer Research

Heidelberg University

University of Amsterdam

University of Auckland
TsingHua University
TsingHua University
The University of Michigan
The University of Michigan
Miami University
Miami University
DRURY University
DRURY University
Jilin University
Jilin University
Fudan University
Fudan University
Wuhan University
Wuhan University
Sun Yat-sen University
Sun Yat-sen University
Universite de Paris
Universite de Paris
Deemed University
Deemed University
Auckland University
Auckland University
The University of Tokyo
The University of Tokyo
Korea University
Korea University
Featured Products
New Products
 

References on CP 775146

Recent perspectives of cerebral palsy (CP) in children: a review.[Pubmed:28353322]

Minerva Pediatr. 2017 Mar 27. pii: S0026-4946.17.04880-0.

The movement and posture disorder of cerebral palsy (CP) is presumed to mainly be a consequence of the motor disorder, but accompanying disturbances with sensations and perception have also been suggested to influence motor function. The heterogeneous condition of cerebral palsy (CP) is caused by an injury to the immature brain affecting movement and posture development. The attainment of standing and walking can be difficult and an assistive device to accomplish the tasks may be required for some children with CP. In this review, we enlightened the role of possible sensory and perceptual disturbances for standing difficulties in children with CP.

Mechanism study of humic acid functional groups for Cr(VI) retention: Two-dimensional FTIR and (13)C CP/MAS NMR correlation spectroscopic analysis.[Pubmed:28355575]

Environ Pollut. 2017 Jun;225:86-92.

Undissolved humic acid (HA) is known to substantially effect the migration and transformation of hexavalent chromium [Cr(VI)] in soils. The mechanisms of Cr(VI) retention in soils by undissolved HA have been reported; however, past studies are inconclusive about the types of HA functional groups that are involved in Cr(VI) retention and the retention mechanisms. Utilizing a two-dimensional correlation spectroscopy (2DCOS) analysis for FTIR and (13)C CP/MAS NMR, this study investigated the variations of HA function groups and molecular structures after reactions with aqueous Cr(VI) under different pH conditions. Based on the changing sequence of functional groups interpreted from the 2DCOS results, a four-step mechanism for Cr(VI) retention was determined as follows: (1) electrostatic adsorption of Cr(VI) to HA surface, (2) complexation of adsorbed Cr(VI) by carboxyl and ester, (3) reduction of complexed Cr(VI) to Cr(III) by phenol and polysaccharide, and (4) complexation of reduced Cr(III) by carboxylic groups. These functional groups that are involved in Cr(VI) retention were determined to occur in aromatic domains.

Cp*Rh(III)-Catalyzed Mild Addition of C(sp(3))-H Bonds to alpha,beta-Unsaturated Aldehydes and Ketones.[Pubmed:28375012]

Org Lett. 2017 Apr 21;19(8):2086-2089.

A Rh(III)-catalyzed addition of benzylic C(sp(3))-H bond to alpha,beta-unsaturated ketones/aldehydes has been realized, leading to efficient synthesis of gamma-aryl ketones/aldehydes. This atom-economic reaction proceeded under mild and redox-neutral conditions with a broad substrate scope. Besides benzylic C-H, allylic C-H bonds are also applicable when assisted by O-methyl ketoxime directing groups.

Molecular characterization of novel and selective peroxisome proliferator-activated receptor alpha agonists with robust hypolipidemic activity in vivo.[Pubmed:18971326]

Mol Pharmacol. 2009 Feb;75(2):296-306.

The nuclear receptor peroxisome proliferator-activated receptor alpha (PPARalpha) is recognized as the primary target of the fibrate class of hypolipidemic drugs and mediates lipid lowering in part by activating a transcriptional cascade that induces genes involved in the catabolism of lipids. We report here the characterization of three novel PPARalpha agonists with therapeutic potential for treating dyslipidemia. These structurally related compounds display potent and selective binding to human PPARalpha and support robust recruitment of coactivator peptides in vitro. These compounds markedly potentiate chimeric transcription systems in cell-based assays and strikingly lower serum triglycerides in vivo. The transcription networks induced by these selective PPARalpha agonists were assessed by transcriptional profiling of mouse liver after short- and long-term treatment. The induction of several known PPARalpha target genes involved with fatty acid metabolism were observed, reflecting the expected pharmacology associated with PPARalpha activation. We also noted the down-regulation of a number of genes related to immune cell function, the acute phase response, and glucose metabolism, suggesting that these compounds may have anti-inflammatory action in the mammalian liver. Whereas these compounds are efficacious in acute preclinical models, extended safety studies and further clinical testing will be required before the full therapeutic promise of a selective PPARalpha agonist is realized.

Keywords:

CP 775146,702680-17-9,Natural Products,PPAR, buy CP 775146 , CP 775146 supplier , purchase CP 775146 , CP 775146 cost , CP 775146 manufacturer , order CP 775146 , high purity CP 775146

Online Inquiry for:

      Fill out the information below

      • Size:Qty: - +

      * Required Fields

                                      Result: