CalycosinCAS# 20575-57-9 |
2D Structure
Quality Control & MSDS
3D structure
Package In Stock
Number of papers citing our products
Cas No. | 20575-57-9 | SDF | Download SDF |
PubChem ID | 5280448 | Appearance | White powder |
Formula | C16H12O5 | M.Wt | 284.26 |
Type of Compound | Flavonoids | Storage | Desiccate at -20°C |
Synonyms | Cyclosin | ||
Solubility | DMSO : ≥ 28 mg/mL (98.50 mM) *"≥" means soluble, but saturation unknown. | ||
Chemical Name | 7-hydroxy-3-(3-hydroxy-4-methoxyphenyl)chromen-4-one | ||
SMILES | COC1=C(C=C(C=C1)C2=COC3=C(C2=O)C=CC(=C3)O)O | ||
Standard InChIKey | ZZAJQOPSWWVMBI-UHFFFAOYSA-N | ||
Standard InChI | InChI=1S/C16H12O5/c1-20-14-5-2-9(6-13(14)18)12-8-21-15-7-10(17)3-4-11(15)16(12)19/h2-8,17-18H,1H3 | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Description | Calycosin, a selective estrogen receptor modulator, is also a vasorelaxant and a noncompetitive Ca(2+) channel blocker. It has anti-oxidative, anti-inflammatory, hepatoprotective,antineoplastic, and effective skin-lightening activities. Calycosin exhibited tyrosinase inhibitory activity with an IC(50) value of 38.4 microM, it suppressed breast cancer cell growth via ERβ-dependent regulation of IGF-1R, p38 MAPK and PI3K/Akt pathways. |
Targets | Bcl-2/Bax | Caspase | Akt | FXR | STAT | p38MAPK | ERK | JNK | PI3K | IGF-1R | Calcium Channel |
In vitro | Calycosin and Genistein Induce Apoptosis by Inactivation of HOTAIR/p-Akt Signaling Pathway in Human Breast Cancer MCF-7 Cells.[Pubmed: 25613518]Cell Physiol Biochem. 2015;35(2):722-8.Calycosin and genistein are the two main components of isoflavones. Previously, we reported that these compounds display antitumor activities in the breast cancer cell lines MCF-7 and T47D. In the present study, we investigated the mechanism of action of Calycosin and genistein, and their respective efficacies as potential therapies for the treatment of breast carcinoma in the clinic.
Calycosin suppresses breast cancer cell growth via ERβ-dependent regulation of IGF-1R, p38 MAPK and PI3K/Akt pathways.[Pubmed: 24618835]PLoS One. 2014 Mar 11;9(3):e91245.We previously reported that Calycosin, a natural phytoestrogen structurally similar to estrogen, successfully triggered apoptosis of estrogen receptor (ER)-positive breast cancer cell line, MCF-7.
|
In vivo | Downregulated RASD1 and upregulated miR-375 are involved in protective effects of calycosin on cerebral ischemia/reperfusion rats.[Pubmed: 24548484 ]J Neurol Sci. 2014 Apr 15;339(1-2):144-8.Isoflavone Calycosin is a typical phytoestrogen extracted from Chinese medical herb Radix Astragali. It has been reported that estrogens could provide neuroprotective effects, and dietary intake of phytoestrogens could reduce stroke injury in cerebral ischemia/reperfusion (I/R) animal models.
Calcium channel blocking activity of calycosin, a major active component of Astragali Radix, on rat aorta.[Pubmed: 16867251]Acta Pharmacol. Sin., 2006, 27(8):1007–12.To investigate the vasoactivity of Calycosin, a major active component of Astragali Radix.
|
Cell Research | Calycosin induces apoptosis in human ovarian cancer SKOV3 cells by activating caspases and Bcl-2 family proteins.[Pubmed: 25672608]Tumour Biol. 2015 Feb 12.Calycosin is widely used as a natural active compound for its anti-oxidative and anti-inflammation activity. Recently, several studies have shown that Calycosin can inhibit growth and induce apoptosis in human cancer cell lines; however, the mechanisms are not completely clarified yet.
|
Animal Research | Protective effects of calycosin against CCl4-induced liver injury with activation of FXR and STAT3 in mice.[Pubmed: 25143196]Pharm Res. 2015 Feb;32(2):538-48.Investigating the hepatoprotective effect of Calycosin against acute liver injury in association with FXR activation and STAT3 phosphorylation.
|
Calycosin Dilution Calculator
Calycosin Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 3.5179 mL | 17.5895 mL | 35.1791 mL | 70.3581 mL | 87.9477 mL |
5 mM | 0.7036 mL | 3.5179 mL | 7.0358 mL | 14.0716 mL | 17.5895 mL |
10 mM | 0.3518 mL | 1.759 mL | 3.5179 mL | 7.0358 mL | 8.7948 mL |
50 mM | 0.0704 mL | 0.3518 mL | 0.7036 mL | 1.4072 mL | 1.759 mL |
100 mM | 0.0352 mL | 0.1759 mL | 0.3518 mL | 0.7036 mL | 0.8795 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
Calycosin (Cyclosin) is a natural active compound with anti-oxidative and anti-inflammation activity. IC50 value: Target: in vitro: calycosin had obvious anti-proliferation effects on SKOV3 cells in a dose- and time-dependent manner. calycosin up-regulated the Bax/Bcl-2 ratio and cleaved caspase-3, cleaved caspase-9 expression in a dose-dependent manner. In summary, calycosin might exert anti-growth and induce-apoptosis activity against ovarian cancer SKOV3 cells through activating caspases and Bcl-2 family proteins, therefore presenting as a promising therapeutic agent for the treatment of ovarian cancer [1]. Both calycosin and genistein inhibited proliferation and induced apoptosis in MCF-7 breast cancer cells, especially after treatment with calycosin. Treatment of MCF-7 cells with calycosin or genistein resulted in decreased phosphorylation of Akt, and decreased expression of its downstream target, HOTAIR [2]. incubation of calycosin resulted in enhanced expression ERβ in MCF-7 and T-47D cells, rather than MDA-231 and MDA-435 cells. Moreover, with the upregulation of ERβ, successive changes in downstream signaling pathways were found, including inactivation of insulin-like growth factor 1 receptor (IGF-1R), then stimulation of p38 MAPK and suppression of the serine/threonine kinase (Akt), and finally poly(ADP-ribose) polymerase 1 (PARP-1) cleavage [3]. in vivo: calycosin stimulated a dramatic increase in uterine weight and downregulated the level of ERα protein in OVX mice [4].
References:
[1]. Zhou Y, et al. Calycosin induces apoptosis in human ovarian cancer SKOV3 cells by activating caspases and Bcl-2 family proteins. Tumour Biol. 2015 Feb 12.
[2]. Chen J, et al. Calycosin and genistein induce apoptosis by inactivation of HOTAIR/p-Akt signaling pathway in human breast cancer MCF-7 cells. Cell Physiol Biochem. 2015;35(2):722-8.
[3]. Chen J, et al. Calycosin suppresses breast cancer cell growth via ERβ-dependent regulation of IGF-1R, p38 MAPK and PI3K/Akt pathways. PLoS One. 2014 Mar 11;9(3):e91245.
[4]. Chen J, et al. Calycosin promotes proliferation of estrogen receptor-positive cells via estrogen receptors and ERK1/2 activation in vitro and in vivo. Cancer Lett. 2011 Sep 28;308(2):144-51.
- SB273005
Catalog No.:BCC6501
CAS No.:205678-31-5
- Orexin B (human)
Catalog No.:BCC5765
CAS No.:205640-91-1
- Orexin A (human, rat, mouse)
Catalog No.:BCC5764
CAS No.:205640-90-0
- alpha-Chaconine
Catalog No.:BCN2162
CAS No.:20562-03-2
- alpha-Solanine
Catalog No.:BCN2701
CAS No.:20562-02-1
- Oxibendazole
Catalog No.:BCC4818
CAS No.:20559-55-1
- Pterocarpadiol D
Catalog No.:BCN7760
CAS No.:2055882-23-8
- Pterocarpadiol C
Catalog No.:BCN7759
CAS No.:2055882-22-7
- Pterocarpadiol A
Catalog No.:BCN7758
CAS No.:2055882-21-6
- Pterocarpadiol B
Catalog No.:BCN7757
CAS No.:2055882-20-5
- Faradiol
Catalog No.:BCN3795
CAS No.:20554-95-4
- Parthenolide
Catalog No.:BCN4896
CAS No.:20554-84-1
- Oxytetracycline hydrochloride
Catalog No.:BCC9110
CAS No.:2058-46-0
- H-D-Asn-OH.H2O
Catalog No.:BCC2879
CAS No.:2058-58-4
- Tetrahydromagnolol
Catalog No.:BCN8255
CAS No.:20601-85-8
- Ergosterol peroxide
Catalog No.:BCN4897
CAS No.:2061-64-5
- Tenofovir hydrate
Catalog No.:BCC4261
CAS No.:206184-49-8
- CB30865
Catalog No.:BCC1457
CAS No.:206275-15-2
- Encecalin
Catalog No.:BCN4898
CAS No.:20628-09-5
- Calycosin-7-O-beta-D-glucoside
Catalog No.:BCN5931
CAS No.:20633-67-4
- Monomelittoside
Catalog No.:BCN8509
CAS No.:20633-72-1
- L-R4W2
Catalog No.:BCC5779
CAS No.:206350-79-0
- Darunavir
Catalog No.:BCC3623
CAS No.:206361-99-1
- Coniferaldehyde
Catalog No.:BCN4899
CAS No.:20649-42-7
Calycosin and genistein induce apoptosis by inactivation of HOTAIR/p-Akt signaling pathway in human breast cancer MCF-7 cells.[Pubmed:25613518]
Cell Physiol Biochem. 2015;35(2):722-8.
BACKGROUND: Calycosin and genistein are the two main components of isoflavones. Previously, we reported that these compounds display antitumor activities in the breast cancer cell lines MCF-7 and T47D. In the present study, we investigated the mechanism of action of Calycosin and genistein, and their respective efficacies as potential therapies for the treatment of breast carcinoma in the clinic. METHODS: MCF-7 cells were treated with Calycosin or genistein. Cell proliferation and apoptosis were measured using CCK8 assay and Hoechst 33258. The expression level of phosphorylated Akt protein was determined by western blotting. Expression level of HOTAIR was quantified by real-time PCR. RESULTS: Both Calycosin and genistein inhibited proliferation and induced apoptosis in MCF-7 breast cancer cells, especially after treatment with Calycosin. Treatment of MCF-7 cells with Calycosin or genistein resulted in decreased phosphorylation of Akt, and decreased expression of its downstream target, HOTAIR. CONCLUSION: Calycosin is more effective in inhibiting breast cancer growth in comparison with genistein, through its regulation of Akt signaling pathways and HOTAIR expression.
Calycosin induces apoptosis in human ovarian cancer SKOV3 cells by activating caspases and Bcl-2 family proteins.[Pubmed:25672608]
Tumour Biol. 2015 Jul;36(7):5333-9.
Calycosin is widely used as a natural active compound for its anti-oxidative and anti-inflammation activity. Recently, several studies have shown that Calycosin can inhibit growth and induce apoptosis in human cancer cell lines; however, the mechanisms are not completely clarified yet. In this study, we investigated the effects of Calycosin on human ovarian carcinoma SKOV3 cells, as well as the mechanisms. SKOV3 cells were treated with Calycosin at a series of concentrations for different times. In vitro, the MTT assay showed that Calycosin had obvious anti-proliferation effects on SKOV3 cells in a dose- and time-dependent manner. Cell morphological changes which expressed by Hoechst 33258 staining were compared with apoptotic changes detected by fluorescence microscope. Compared with control group, the group treated with Calycosin showed a significant increase in apoptosis rate. Expression of apoptosis related Bax/Bcl-2 and caspases proteins were detected by Western blotting. The results demonstrated that Calycosin up-regulated the Bax/Bcl-2 ratio and cleaved caspase-3, cleaved caspase-9 expression in a dose-dependent manner. In summary, Calycosin might exert anti-growth and induce-apoptosis activity against ovarian cancer SKOV3 cells through activating caspases and Bcl-2 family proteins, therefore presenting as a promising therapeutic agent for the treatment of ovarian cancer.
Calycosin suppresses breast cancer cell growth via ERbeta-dependent regulation of IGF-1R, p38 MAPK and PI3K/Akt pathways.[Pubmed:24618835]
PLoS One. 2014 Mar 11;9(3):e91245.
We previously reported that Calycosin, a natural phytoestrogen structurally similar to estrogen, successfully triggered apoptosis of estrogen receptor (ER)-positive breast cancer cell line, MCF-7. To better understand the antitumor activities of Calycosin against breast cancer, besides MCF-7 cells, another ER-positive cell line T-47D was analyzed here, with ER-negative cell lines (MDA-231, MDA-435) as control. Notably, Calycosin led to inhibited cell proliferation and apoptosis only in ER-positive cells, particularly in MCF-7 cells, whereas no such effect was observed in ER-negative cells. Then we investigated whether regulation of ERbeta, a subtype of ER, contributed to Calycosin-induced apoptosis in breast cancer cells. The results showed that incubation of Calycosin resulted in enhanced expression ERbeta in MCF-7 and T-47D cells, rather than MDA-231 and MDA-435 cells. Moreover, with the upregulation of ERbeta, successive changes in downstream signaling pathways were found, including inactivation of insulin-like growth factor 1 receptor (IGF-1R), then stimulation of p38 MAPK and suppression of the serine/threonine kinase (Akt), and finally poly(ADP-ribose) polymerase 1 (PARP-1) cleavage. However, the other two members of the mitogen-activated protein kinase (MAPK) family, extracellular signal-regulated kinase (ERK) 1/2 and c-Jun N-terminal kinase (JNK), were not consequently regulated by downregulated IGF-1R, indicating ERK 1/2 and JNK pathways were not necessary to allow proliferation inhibition by Calycosin. Taken together, our results indicate that Calycosin tends to inhibit growth and induce apoptosis in ER-positive breast cancer cells, which is mediated by ERbeta-induced inhibition of IGF-1R, along with the selective regulation of MAPK and phosphatidylinositol 3-kinase (PI3K)/Akt pathways.
Downregulated RASD1 and upregulated miR-375 are involved in protective effects of calycosin on cerebral ischemia/reperfusion rats.[Pubmed:24548484]
J Neurol Sci. 2014 Apr 15;339(1-2):144-8.
Isoflavone Calycosin is a typical phytoestrogen extracted from Chinese medical herb Radix Astragali. It has been reported that estrogens could provide neuroprotective effects, and dietary intake of phytoestrogens could reduce stroke injury in cerebral ischemia/reperfusion (I/R) animal models. In the present study, we investigate the molecular mechanisms underlying the neuroprotective effects of Calycosin on middle cerebral artery occlusion (MCAO) rats. Focal cerebral ischemia was induced in male rats by MCAO, neurological deficits and brain edema was evaluated after 24h of reperfusion. The results shown Calycosin significantly reduced the infarcted volume and the brain water content, and improved the neurological deficit. To provide insight into the functions of estrogen receptor (ER)-mediated signaling pathway in neuroprotection by Calycosin, the expression of miR-375, ER-alpha, RASD1 (Dexamethasone-induced Ras-related protein 1) and Bcl-2 was determined by RT-PCR or western blot assay. Calycosin exhibited a downregulation of RASD1, and an upregulation of ER-alpha, miR-375 and Bcl-2. Our finding illustrated that Calycosin had been shown neuroprotective effects in cerebral ischemia/reperfusion rats, and the molecular mechanisms may correlate with the positive feedback between ER-alpha and miR-375, along with the regulation of downstream targets.
Protective effects of calycosin against CCl4-induced liver injury with activation of FXR and STAT3 in mice.[Pubmed:25143196]
Pharm Res. 2015 Feb;32(2):538-48.
PURPOSE: Investigating the hepatoprotective effect of Calycosin against acute liver injury in association with FXR activation and STAT3 phosphorylation. METHODS: The acute liver injury model was established by intraperitoneal injection of CCl4 in C57BL/6 mice. Serum alanine aminotransferase, aspartate aminotransferase, HE staining and TUNEL assay were used to identify the amelioration of the liver histopathological changes and hepatocytes apoptosis after Calycosin treatment. ELISA kit and 5-bromo-2-deoxyuridine immunohistochemistry were used to measure the liver bile acid concentration and hepatocyte mitotic rate in vivo. The relation between Calycosin and activation of FXR and STAT3 was comfirmed using the Luciferase assay, Molecular docking, Real-time PCR and Western Blot in vitro. RESULTS: The liver histopathological changes, hepatocytes apoptosis, liver bile acid overload and hepatocyte mitosis showed significant changes after Calycosin treatment. Calycosin promoted the expression of FXR target genes such as FoxM1B and SHP but the effect was reversed by FXR suppressor guggulsterone. Molecular docking results indicated that Calycosin could be embedded into the binding pocket of FXR, thereby increasing the expressions of STAT3 tyrosine phosphorylation and its target genes, Bcl-xl and SOCS3. CONCLUSIONS: Calycosin plays a critical role in hepatoprotection against liver injury in association with FXR activation and STAT3 phosphorylation.