L-R4W2

TRPV1 antagonist peptide CAS# 206350-79-0

L-R4W2

2D Structure

Catalog No. BCC5779----Order now to get a substantial discount!

Product Name & Size Price Stock
L-R4W2: 5mg $1346 In Stock
L-R4W2: 10mg Please Inquire In Stock
L-R4W2: 20mg Please Inquire Please Inquire
L-R4W2: 50mg Please Inquire Please Inquire
L-R4W2: 100mg Please Inquire Please Inquire
L-R4W2: 200mg Please Inquire Please Inquire
L-R4W2: 500mg Please Inquire Please Inquire
L-R4W2: 1000mg Please Inquire Please Inquire
Related Products
  • GSK1904529A

    Catalog No.:BCC1062
    CAS No.:1089283-49-7
  • PQ 401

    Catalog No.:BCC1159
    CAS No.:196868-63-0
  • BMS-536924

    Catalog No.:BCC1177
    CAS No.:468740-43-4
  • NVP-ADW742

    Catalog No.:BCC4553
    CAS No.:475488-23-4
  • AG-1024

    Catalog No.:BCC1242
    CAS No.:65678-07-1

Quality Control of L-R4W2

3D structure

Package In Stock

L-R4W2

Number of papers citing our products

Chemical Properties of L-R4W2

Cas No. 206350-79-0 SDF Download SDF
PubChem ID 9811903 Appearance Powder
Formula C46H71N21O6 M.Wt 1014.2
Type of Compound N/A Storage Desiccate at -20°C
Solubility Soluble to 1 mg/ml in water
Sequence RRRRWW

(Modifications: Trp-6 = C-terminal amide)

Chemical Name (2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-amino-5-(diaminomethylideneamino)pentanoyl]amino]-5-(diaminomethylideneamino)pentanoyl]amino]-5-(diaminomethylideneamino)pentanoyl]amino]-5-(diaminomethylideneamino)pentanoyl]amino]-3-(1H-indol-3-yl)propanoyl]amino]-3-(1H-indol-3-yl)propanoic acid
SMILES C1=CC=C2C(=C1)C(=CN2)CC(C(=O)NC(CC3=CNC4=CC=CC=C43)C(=O)O)NC(=O)C(CCCN=C(N)N)NC(=O)C(CCCN=C(N)N)NC(=O)C(CCCN=C(N)N)NC(=O)C(CCCN=C(N)N)N
Standard InChIKey HUIFTNOBFKDELX-UJARKJSPSA-N
Standard InChI InChI=1S/C46H70N20O7/c47-29(11-5-17-56-43(48)49)37(67)62-32(14-6-18-57-44(50)51)38(68)63-33(15-7-19-58-45(52)53)39(69)64-34(16-8-20-59-46(54)55)40(70)65-35(21-25-23-60-30-12-3-1-9-27(25)30)41(71)66-36(42(72)73)22-26-24-61-31-13-4-2-10-28(26)31/h1-4,9-10,12-13,23-24,29,32-36,60-61H,5-8,11,14-22,47H2,(H,62,67)(H,63,68)(H,64,69)(H,65,70)(H,66,71)(H,72,73)(H4,48,49,56)(H4,50,51,57)(H4,52,53,58)(H4,54,55,59)/t29-,32-,33-,34-,35-,36-/m0/s1
General tips For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months.
We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months.
Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it.
About Packaging 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial.
2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial.
3. Try to avoid loss or contamination during the experiment.
Shipping Condition Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request.

Biological Activity of L-R4W2

DescriptionVanilloid TRPV1 (VR1) receptor antagonist peptide (IC50 ~ 0.1 μM); blocks Ca2+ currents in dorsal root ganglion neurons. Analgesic in vivo.

L-R4W2 Dilution Calculator

Concentration (start)
x
Volume (start)
=
Concentration (final)
x
Volume (final)
 
 
 
C1
V1
C2
V2

calculate

L-R4W2 Molarity Calculator

Mass
=
Concentration
x
Volume
x
MW*
 
 
 
g/mol

calculate

Organizitions Citing Our Products recently

 
 
 

Calcutta University

University of Minnesota

University of Maryland School of Medicine

University of Illinois at Chicago

The Ohio State University

University of Zurich

Harvard University

Colorado State University

Auburn University

Yale University

Worcester Polytechnic Institute

Washington State University

Stanford University

University of Leipzig

Universidade da Beira Interior

The Institute of Cancer Research

Heidelberg University

University of Amsterdam

University of Auckland
TsingHua University
TsingHua University
The University of Michigan
The University of Michigan
Miami University
Miami University
DRURY University
DRURY University
Jilin University
Jilin University
Fudan University
Fudan University
Wuhan University
Wuhan University
Sun Yat-sen University
Sun Yat-sen University
Universite de Paris
Universite de Paris
Deemed University
Deemed University
Auckland University
Auckland University
The University of Tokyo
The University of Tokyo
Korea University
Korea University
Featured Products
New Products
 

References on L-R4W2

The arginine-rich hexapeptide R4W2 is a stereoselective antagonist at the vanilloid receptor 1: a Ca2+ imaging study in adult rat dorsal root ganglion neurons.[Pubmed:12023528]

J Pharmacol Exp Ther. 2002 Jun;301(3):981-6.

Vanilloid receptors (VR) integrate various painful stimuli, e.g., noxious heat, acidic pH, capsaicin, and resiniferatoxin (RTX). Although VR antagonists may be useful analgesics, the available agents capsazepine and ruthenium red lack the necessary potency and selectivity. Recently, submicromolar concentrations of the arginine-rich hexapeptide RRRRWW-NH(2) (R(4)W(2)) blocked VR-mediated ionic currents in a Xenopus expression system in a noncompetitive and nonstereoselective manner. Here, VR-antagonistic effects of L-R(4)W(2) and D-R(4)W(2), hexapeptides consisting entirely of L- and D-amino acids, were characterized in native adult rat dorsal root ganglion neurons using [Ca(2+)](i) imaging (Fura-2/acetoxymethyl ester). Fura-2 fluorescence ratio (R) was increased by RTX and capsaicin by 0.473 +/- 0.098 unit above basal levels of 0.903 +/- 0.011 (R(max), 2.289 +/- 0.031; R(min), 0.657 +/- 0.007) in a concentration-dependent manner (log EC(50): RTX, -10.04 +/- 0.05, n = 10; capsaicin, -6.60 +/- 0.10, n = 11). Agonist concentration-response curves were shifted to the right by L- and D-R(4)W(2) (0.1, 1, and 10 microM each) and by capsazepine (3, 10, 30, and 100 microM), whereas their maximal effects and slopes remained unaffected, indicating competitive antagonism. Schild analysis for L-R(4)W(2) yielded apparent dissociation constants of 4.0 nM (RTX) and 3.7 nM (capsaicin), and slopes smaller than unity (RTX, 0.38; capsaicin, 0.42). Apparent dissociation constants and slopes for D-R(4)W(2) and capsaicin were 153 nM and 0.67 versus 4.1 microM and 1.19 for capsazepine and capsaicin. Thus, VR-mediated effects in native dorsal root ganglion neurons were antagonized by L-R(4)W(2) > D-R(4)W(2) > capsazepine (order of potency). In conclusion, the R(4)W(2) hexapeptide is a potent, stereospecific, and (probably) competitive VR antagonist, although an allosteric interaction cannot be completely ruled out.

Arginine-rich peptides are blockers of VR-1 channels with analgesic activity.[Pubmed:10996311]

FEBS Lett. 2000 Sep 15;481(2):131-6.

Vanilloid receptors (VRs) play a fundamental role in the transduction of peripheral tissue injury and/or inflammation responses. Molecules that antagonize VR channel activity may act as selective and potent analgesics. We report that synthetic arginine-rich hexapeptides block heterologously expressed VR-1 channels with submicromolar efficacy in a weak voltage-dependent manner, consistent with a binding site located near/at the entryway of the aqueous pore. Dynorphins, natural arginine-rich peptides, also blocked VR-1 activity with micromolar affinity. Notably, synthetic and natural arginine-rich peptides attenuated the ocular irritation produced by topical capsaicin application onto the eyes of experimental animals. Taken together, our results imply that arginine-rich peptides are VR-1 channel blockers with analgesic activity. These findings may expand the development of novel analgesics by targeting receptor sites distinct from the capsaicin binding site.

Keywords:

L-R4W2,206350-79-0,Natural Products,TRP Channel, buy L-R4W2 , L-R4W2 supplier , purchase L-R4W2 , L-R4W2 cost , L-R4W2 manufacturer , order L-R4W2 , high purity L-R4W2

Online Inquiry for:

      Fill out the information below

      • Size:Qty: - +

      * Required Fields

                                      Result: