Cucurbitadienol

CAS# 35012-08-9

Cucurbitadienol

Catalog No. BCN3342----Order now to get a substantial discount!

Product Name & Size Price Stock
Cucurbitadienol: 5mg Please Inquire In Stock
Cucurbitadienol: 10mg Please Inquire In Stock
Cucurbitadienol: 20mg Please Inquire Please Inquire
Cucurbitadienol: 50mg Please Inquire Please Inquire
Cucurbitadienol: 100mg Please Inquire Please Inquire
Cucurbitadienol: 200mg Please Inquire Please Inquire
Cucurbitadienol: 500mg Please Inquire Please Inquire
Cucurbitadienol: 1000mg Please Inquire Please Inquire

Quality Control of Cucurbitadienol

Number of papers citing our products

Chemical structure

Cucurbitadienol

3D structure

Chemical Properties of Cucurbitadienol

Cas No. 35012-08-9 SDF Download SDF
PubChem ID 14543446 Appearance Powder
Formula C30H50O M.Wt 426.7
Type of Compound Triterpenoids Storage Desiccate at -20°C
Solubility Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc.
Chemical Name (3S,8R,9R,10S,13R,14S,17R)-4,4,9,13,14-pentamethyl-17-[(2R)-6-methylhept-5-en-2-yl]-2,3,7,8,10,11,12,15,16,17-decahydro-1H-cyclopenta[a]phenanthren-3-ol
SMILES CC(CCC=C(C)C)C1CCC2(C1(CCC3(C2CC=C4C3CCC(C4(C)C)O)C)C)C
Standard InChIKey WSPRAEIJBDUDRX-FBJXRMALSA-N
Standard InChI InChI=1S/C30H50O/c1-20(2)10-9-11-21(3)22-16-17-30(8)25-14-12-23-24(13-15-26(31)27(23,4)5)28(25,6)18-19-29(22,30)7/h10,12,21-22,24-26,31H,9,11,13-19H2,1-8H3/t21-,22-,24-,25-,26+,28+,29-,30+/m1/s1
General tips For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months.
We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months.
Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it.
About Packaging 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial.
2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial.
3. Try to avoid loss or contamination during the experiment.
Shipping Condition Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request.

Source of Cucurbitadienol

The fresh fruits of Momordica charantia L.

Biological Activity of Cucurbitadienol

Description1. Cucurbitadienol has significant anti-inflammatory, anti-tumor effect, is also CucurbitacinBE compounds biosynthesis the key intermediate. 2. Cucurbitadienol synthase, the first committed enzyme for cucurbitacin biosynthesis, is a distinct enzyme from cycloartenol synthase for phytosterol biosynthesis. 3. CYP87D18 catalyzed the oxidation of cucurbitadienol at C-11 to produce 11-oxo cucurbitadienol and 11-hydroxy cucurbitadienol.
TargetsImmunology & Inflammation related

Cucurbitadienol Dilution Calculator

Concentration (start)
x
Volume (start)
=
Concentration (final)
x
Volume (final)
 
 
 
C1
V1
C2
V2

calculate

Cucurbitadienol Molarity Calculator

Mass
=
Concentration
x
Volume
x
MW*
 
 
 
g/mol

calculate

Preparing Stock Solutions of Cucurbitadienol

1 mg 5 mg 10 mg 20 mg 25 mg
1 mM 2.3436 mL 11.7178 mL 23.4357 mL 46.8713 mL 58.5892 mL
5 mM 0.4687 mL 2.3436 mL 4.6871 mL 9.3743 mL 11.7178 mL
10 mM 0.2344 mL 1.1718 mL 2.3436 mL 4.6871 mL 5.8589 mL
50 mM 0.0469 mL 0.2344 mL 0.4687 mL 0.9374 mL 1.1718 mL
100 mM 0.0234 mL 0.1172 mL 0.2344 mL 0.4687 mL 0.5859 mL
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations.

Organizitions Citing Our Products recently

 
 
 

Calcutta University

University of Minnesota

University of Maryland School of Medicine

University of Illinois at Chicago

The Ohio State University

University of Zurich

Harvard University

Colorado State University

Auburn University

Yale University

Worcester Polytechnic Institute

Washington State University

Stanford University

University of Leipzig

Universidade da Beira Interior

The Institute of Cancer Research

Heidelberg University

University of Amsterdam

University of Auckland
TsingHua University
TsingHua University
The University of Michigan
The University of Michigan
Miami University
Miami University
DRURY University
DRURY University
Jilin University
Jilin University
Fudan University
Fudan University
Wuhan University
Wuhan University
Sun Yat-sen University
Sun Yat-sen University
Universite de Paris
Universite de Paris
Deemed University
Deemed University
Auckland University
Auckland University
The University of Tokyo
The University of Tokyo
Korea University
Korea University
Featured Products
New Products
 

References on Cucurbitadienol

Functional Characterization of Cucurbitadienol Synthase and Triterpene Glycosyltransferase Involved in Biosynthesis of Mogrosides from Siraitia grosvenorii.[Pubmed:25759326]

Plant Cell Physiol. 2015 Jun;56(6):1172-82.

Mogrosides, the major bioactive components isolated from the fruits of Siraitia grosvenorii, are a family of cucurbitane-type tetracyclic triterpenoid saponins that are used worldwide as high-potency sweeteners and possess a variety of notable pharmacological activities. Mogrosides are synthesized from 2,3-oxidosqualene via a series of reactions catalyzed by Cucurbitadienol synthase (CbQ), Cyt P450s (P450s) and UDP glycosyltransferases (UGTs) in vivo. However, the relevant genes have not been characterized to date. In this study, we report successful identification of SgCbQ and UGT74AC1, which were previously predicted via RNA-sequencing (RNA-seq) and digital gene expression (DGE) profile analysis of the fruits of S. grosvenorii. SgCbQ was functionally characterized by expression in the lanosterol synthase-deficient yeast strain GIL77 and was found to accumulate Cucurbitadienol as the sole product. UGT74AC1 was heterologously expressed in Escherichia coli as a His-tag protein and it showed specificity for mogrol by transfer of a glucose moiety to the C-3 hydroxyl to form mogroside IE by in vitro enzymatic activity assays. This study reports the identification of CbQ and glycosyltransferase from S. grosvenorii for the first time. The results also suggest that RNA-seq, combined with DGE profile analysis, is a promising approach for discovery of candidate genes involved in biosynthesis of triterpene saponins.

Oxidation of Cucurbitadienol Catalyzed by CYP87D18 in the Biosynthesis of Mogrosides from Siraitia grosvenorii.[Pubmed:26903528]

Plant Cell Physiol. 2016 May;57(5):1000-7.

Mogrosides, the principally bioactive compounds extracted from the fruits of Siraitia grosvenorii, are a group of glycosylated cucurbitane-type tetracyclic triterpenoid saponins that exhibit a wide range of notable biological activities and are commercially available worldwide as natural sweeteners. The biosynthesis of mogrosides involves initial cyclization of 2,3-oxidosqualene to the triterpenoid skeleton of Cucurbitadienol, followed by a series of oxidation reactions catalyzed by Cyt P450s (P450s) and then glycosylation reactions catalyzed by UDP glycosyltransferases (UGTs). We previously reported the identification of a Cucurbitadienol synthase (SgCbQ) and a mogrol C-3 hydroxyl glycosyltransferase (UGT74AC1). However, molecular characterization of further transformation of Cucurbitadienol to mogrol by P450s remains unavailable. In this study, we report the successful identification of a multifunctional P450 (CYP87D18) as being involved in C-11 oxidation of Cucurbitadienol. In vitro enzymatic activity assays showed that CYP87D18 catalyzed the oxidation of Cucurbitadienol at C-11 to produce 11-oxo Cucurbitadienol and 11-hydroxy Cucurbitadienol. Furthermore, 11-oxo-24,25-epoxy Cucurbitadienol as well as 11-oxo Cucurbitadienol and 11-hydroxy Cucurbitadienol were produced when CYP87D18 was co-expressed with SgCbQ in genetic yeast, and their structures were confirmed by liquid chromatography-solid-phase extraction-nuclear magnetic resonance-mass spectrometry coupling (LC-SPE-NMR-MS). Taken together, these results suggest a role for CYP87D18 as a multifunctional Cucurbitadienol oxidase in the mogrosides pathway.

Keywords:

Cucurbitadienol,35012-08-9,Natural Products, buy Cucurbitadienol , Cucurbitadienol supplier , purchase Cucurbitadienol , Cucurbitadienol cost , Cucurbitadienol manufacturer , order Cucurbitadienol , high purity Cucurbitadienol

Online Inquiry for:

      Fill out the information below

      • Size:Qty: - +

      * Required Fields

                                      Result: