EchinatineCAS# 480-83-1 |
- Intermedine
Catalog No.:BCN1997
CAS No.:10285-06-0
- Lycopsamine
Catalog No.:BCN1999
CAS No.:10285-07-1
- Indicine
Catalog No.:BCN1995
CAS No.:480-82-0
- Rinderine
Catalog No.:BCN1971
CAS No.:6029-84-1
Quality Control & MSDS
Number of papers citing our products
Chemical structure
3D structure
Cas No. | 480-83-1 | SDF | Download SDF |
PubChem ID | 10197 | Appearance | White powder |
Formula | C15H25NO5 | M.Wt | 299.37 |
Type of Compound | Alkaloids | Storage | Desiccate at -20°C |
Solubility | Freely soluble in methanol and water; sparingly soluble in acetone | ||
Chemical Name | [(7S,8S)-7-hydroxy-5,6,7,8-tetrahydro-3H-pyrrolizin-1-yl]methyl 2-hydroxy-2-[(1S)-1-hydroxyethyl]-3-methylbutanoate | ||
SMILES | CC(C)C(C(C)O)(C(=O)OCC1=CCN2C1C(CC2)O)O | ||
Standard InChIKey | SFVVQRJOGUKCEG-RZUNFUDNSA-N | ||
Standard InChI | InChI=1S/C15H25NO5/c1-9(2)15(20,10(3)17)14(19)21-8-11-4-6-16-7-5-12(18)13(11)16/h4,9-10,12-13,17-18,20H,5-8H2,1-3H3/t10-,12-,13-,15?/m0/s1 | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Description | 1. Echinatin can inhibit DNP-ATPase activity while stimulating range latent ATPase activity in the low concentration, so echinatin can disturb the mitochondrial energy transfer reactions and membrane permeability. 2. Echinatin exerts a protective effect against ischemia/reperfusion (I/R)-induced myocardial injury on hearts, this effect may be attributed to the antioxidant and anti-inflammatory activities of this compound. |
Targets | ATPase | TNF-α | IL Receptor |
Echinatine Dilution Calculator
Echinatine Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 3.3403 mL | 16.7017 mL | 33.4035 mL | 66.807 mL | 83.5087 mL |
5 mM | 0.6681 mL | 3.3403 mL | 6.6807 mL | 13.3614 mL | 16.7017 mL |
10 mM | 0.334 mL | 1.6702 mL | 3.3403 mL | 6.6807 mL | 8.3509 mL |
50 mM | 0.0668 mL | 0.334 mL | 0.6681 mL | 1.3361 mL | 1.6702 mL |
100 mM | 0.0334 mL | 0.167 mL | 0.334 mL | 0.6681 mL | 0.8351 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- Indicine
Catalog No.:BCN1995
CAS No.:480-82-0
- Seneciphylline
Catalog No.:BCN5563
CAS No.:480-81-9
- Integerrimine
Catalog No.:BCN2131
CAS No.:480-79-5
- Platyphylline
Catalog No.:BCN2115
CAS No.:480-78-4
- Jacoline
Catalog No.:BCN2088
CAS No.:480-76-2
- Jaconine
Catalog No.:BCN2089
CAS No.:480-75-1
- 2',4',6'-Trihydroxyacetophenone
Catalog No.:BCN3996
CAS No.:480-66-0
- Orsellinic acid
Catalog No.:BCN6574
CAS No.:480-64-8
- Lecanoric acid
Catalog No.:BCN5562
CAS No.:480-56-8
- Retrorsine
Catalog No.:BCN2119
CAS No.:480-54-6
- Hydrangenol
Catalog No.:BCN5561
CAS No.:480-47-7
- Acacetin
Catalog No.:BCN5560
CAS No.:480-44-4
- Retronecine
Catalog No.:BCN2034
CAS No.:480-85-3
- Retusine
Catalog No.:BCN2123
CAS No.:480-86-4
- Dicrotaline
Catalog No.:BCN2079
CAS No.:480-87-5
- Benzofuroxan
Catalog No.:BCC8852
CAS No.:480-96-6
- Carbenicillin, Disodium Salt
Catalog No.:BCC1200
CAS No.:4800-94-6
- TFB-TBOA
Catalog No.:BCC5919
CAS No.:480439-73-4
- Lucialdehyde B
Catalog No.:BCN2450
CAS No.:480439-84-7
- Edoxaban
Catalog No.:BCC1543
CAS No.:480449-70-5
- Edoxaban tosylate
Catalog No.:BCC1544
CAS No.:480449-71-6
- Alpha-Santonin
Catalog No.:BCN7828
CAS No.:481-06-1
- alpha-Spinasterol
Catalog No.:BCN5564
CAS No.:481-18-5
- Epiandrosterone
Catalog No.:BCC4481
CAS No.:481-29-8
The effects of echinatin and its related compounds on the mitochondrial energy transfer reaction.[Pubmed:6221118]
J Toxicol Sci. 1982 Nov;7(4):245-54.
To investigate the mechanism by which various biological action of licorice root are brought about, the effects of echinatin as a small constituent of Glycyrrhiza echinata and several related compounds on mitochondrial energy transfer reactions were examined. The results obtained were as follows: 1) Echinatin, 4'-hydroxychalcone, chalcone and 3,4'-dihydroxychalcone at a low concentration cause deterioration of respiratory control and oxidative phosphorylation of isolated rat liver mitochondria. 2) Chalcone and 4'-hydroxychalcone stimulate both latent and DNP-ATPase activity of mitochondria. Echinatin inhibits DNP-ATPase activity while stimulating range latent ATPase activity in the low concentration. 3) Chalcone and 4'-hydroxychalcone induce a rapid potassium release from mitochondrial vesicles, while echinatin and 3,4'-dihydroxychalcone have lesser effect than the former two substances. From these results, it can be concluded that echinatin and several related compounds disturb the mitochondrial energy transfer reactions and membrane permeability.
Cardioprotection provided by Echinatin against ischemia/reperfusion in isolated rat hearts.[Pubmed:27246834]
BMC Cardiovasc Disord. 2016 May 31;16:119.
BACKGROUND: This study evaluated the protective effect of Echinatin against myocardial ischemia/reperfusion (I/R) injury in rats. METHODS: The effect of Echinatin on cardiac function in rats subjected to I/R was demonstrated through improved Langendorff retrograde perfusion technology. Adult Sprague-Dawley rats were randomly divided into five groups, and myocardial infarct size was macroscopically estimated through 2,3,5-triphenyltetrazolium chloride staining. The coronary effluent was analyzed for the release of lactate dehydrogenase (LDH) and creatine kinase (CK) to assess the degree of cardiac injury. The concentrations of malondialdehyde (MDA), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-alpha) were determined along with superoxide dismutase (SOD) activity using ELISA. Finally, cardiomyocyte apoptosis analysis was conducted with POD, an in situ cell death detection kit. RESULTS: Echinatin (0.5 and 2.5 mug/mL) pretreatment enhanced the maximum up/down rate of the left ventricular pressure (+/-dp/dtmax), improved the heart rate, increased the left ventricular developed pressure (LVDP), enhanced the coronary flow, and reduced the CK and LDH levels in the coronary flow of the treated group compared with the I/R group. Echinatin limited the contents of CK and LDH, improved the LVDP, reduced the contents of MDA, IL-6, and TNF-alpha, and increased the SOD activity. The infarct size and cell apoptosis in the hearts of the rats in the Echinatin-treated group were smaller and lower, respectively, than those in the hearts of the rats in the I/R control group. CONCLUSION: Echinatin exerts a protective effect against I/R-induced myocardial injury on hearts. This effect may be attributed to the antioxidant and anti-inflammatory activities of this compound.
Semi-automated separation of the epimeric dehydropyrrolizidine alkaloids lycopsamine and intermedine: preparation of their N-oxides and NMR comparison with diastereoisomeric rinderine and echinatine.[Pubmed:24816769]
Phytochem Anal. 2014 Sep-Oct;25(5):429-38.
INTRODUCTION: The diversity of structure and, particularly, stereochemical variation of the dehydropyrrolizidine alkaloids can present challenges for analysis and the isolation of pure compounds for the preparation of analytical standards and for toxicology studies. OBJECTIVE: To investigate methods for the separation of gram-scale quantities of the epimeric dehydropyrrolizidine alkaloids lycopsamine and intermedine and to compare their NMR spectroscopic data with those of their heliotridine-based analogues Echinatine and rinderine. METHODS: Lycopsamine and intermedine were extracted, predominantly as their N-oxides and along with their acetylated derivatives, from commercial samples of comfrey (Symphytum officinale) root. Alkaloid enrichment involved liquid-liquid partitioning of the crude methanol extract between dilute aqueous acid and n-butanol, reduction of N-oxides and subsequent continuous liquid-liquid extraction of free base alkaloids into CHCl3 . The alkaloid-rich fraction was further subjected to semi-automated flash chromatography using boronated soda glass beads or boronated quartz sand. RESULTS: Boronated soda glass beads (or quartz sand) chromatography adapted to a Biotage Isolera Flash Chromatography System enabled large-scale separation (at least up to 1-2 g quantities) of lycopsamine and intermedine. The structures were confirmed using one- and two-dimensional (1) H- and (13) C-NMR spectroscopy. Examination of the NMR data for lycopsamine, intermedine and their heliotridine-based analogues Echinatine and rinderine allowed for some amendments of literature data and provided useful comparisons for determining relative configurations in monoester dehydropyrrolizidine alkaloids. A similar NMR comparison of lycopsamine and intermedine with their N-oxides showed the effects of N-oxidation on some key chemical shifts. A levorotatory shift in specific rotation from +3.29 degrees to -1.5 degrees was observed for lycopsamine when dissolved in ethanol or methanol respectively. CONCLUSION: A semi-automated flash chromatographic process using boronated soda glass beads was standardised and confirmed as a useful, larger scale preparative approach for separating the epimers lycopsamine and intermedine. The useful NMR correlations to stereochemical arrangements within this specific class of dehydropyrrolizidine alkaloid cannot be confidently extrapolated to other similar dehydropyrrolizidine alkaloids. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.