Home >> Research Area >>Natural Products>>Quinones>> Isovalerylshikonin

Isovalerylshikonin

CAS# 52387-14-1

Isovalerylshikonin

2D Structure

Catalog No. BCN8887----Order now to get a substantial discount!

Product Name & Size Price Stock
Isovalerylshikonin: 5mg $173 In Stock
Isovalerylshikonin: 10mg Please Inquire In Stock
Isovalerylshikonin: 20mg Please Inquire Please Inquire
Isovalerylshikonin: 50mg Please Inquire Please Inquire
Isovalerylshikonin: 100mg Please Inquire Please Inquire
Isovalerylshikonin: 200mg Please Inquire Please Inquire
Isovalerylshikonin: 500mg Please Inquire Please Inquire
Isovalerylshikonin: 1000mg Please Inquire Please Inquire

Quality Control of Isovalerylshikonin

3D structure

Package In Stock

Isovalerylshikonin

Number of papers citing our products

Chemical Properties of Isovalerylshikonin

Cas No. 52387-14-1 SDF Download SDF
PubChem ID 479497 Appearance Powder
Formula C21H24O6 M.Wt 372.4
Type of Compound Quinones Storage Desiccate at -20°C
Synonyms 76549-35-4
Solubility Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc.
Chemical Name [(1R)-1-(5,8-dihydroxy-1,4-dioxonaphthalen-2-yl)-4-methylpent-3-enyl] 3-methylbutanoate
SMILES CC(C)CC(=O)OC(CC=C(C)C)C1=CC(=O)C2=C(C=CC(=C2C1=O)O)O
Standard InChIKey UTOUNDHZJFIVPK-QGZVFWFLSA-N
Standard InChI InChI=1S/C21H24O6/c1-11(2)5-8-17(27-18(25)9-12(3)4)13-10-16(24)19-14(22)6-7-15(23)20(19)21(13)26/h5-7,10,12,17,22-23H,8-9H2,1-4H3/t17-/m1/s1
General tips For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months.
We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months.
Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it.
About Packaging 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial.
2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial.
3. Try to avoid loss or contamination during the experiment.
Shipping Condition Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request.

Source of Isovalerylshikonin

The roots of Lithosperraum erythrorhizon Sieb. et Zucc.

Biological Activity of Isovalerylshikonin

DescriptionIsovalerylshikonin, a new resistance-modifying agent from Arnebia euchroma, supresses antimicrobial resistance of drug-resistant Staphylococcus aureus; it also has anti-mite activity. Isovalerylshikonin as a candidate of AChE inhibitor, it may prevent apoptotic cell death induced by hydrogen peroxide in human and rat neuronal SH-SY5Y and PC12 cells.
TargetsAChR | MAPK | JNK | ERK | c-MYC | AKT | Antifection
In vitro

Isovalerylshikonin, a new resistance-modifying agent from Arnebia euchroma, supresses antimicrobial resistance of drug-resistant Staphylococcus aureus.[Pubmed: 30176356 ]

Int J Antimicrob Agents. 2019 Jan;53(1):70-73.

Antimicrobial resistance is the greatest threat to the treatment of bacterial infectious diseases. The development of resistance-modifying agents (RMAs) represents a promising strategy to mitigate the spread of bacterial antimicrobial resistance.
METHODS AND RESULTS:
In this study, a natural product, Isovalerylshikonin (IVS), was isolated from Arnebia euchroma, a traditional Chinese medicine herb, that exhibited marginal antibacterial activity against drug-resistant Staphylococcus aureus RN4220, with a minimum inhibitory concentration (MIC) of 16 mg/L. In addition, a synergistic effect between IVS and streptomycin (STM) was detected by the microdilution antimicrobial chequerboard assay, with a reduction in the MIC of STM by up to 16-fold against strain RN4220. A bacterial ethidium bromide efflux assay and reverse transcription PCR were performed to investigate the synergistic mechanism. IVS significantly inhibited bacterial efflux and expression of msrA mRNA in vitro. A murine peritonitis/sepsis model was employed to test the in vivo synergistic activity of IVS and STM. IVS synergistically decreased bacterial counts with STM in peritoneal, spleen and liver tissue and increased mouse survival with STM in 7 days. The acute toxicity of IVS was tested and the 50% lethal dose (LD50) of IVS with a single exposure was 2.584 g/kg in mice.
CONCLUSIONS:
Overall, IVS, a low-toxicity RMA, exhibited synergistic antibacterial activities in vitro and in vivo against drug-resistant S. aureus. The effects were mediated by suppression of msrA mRNA expression and reduced bacterial efflux. In addition, these data support that IVS is a potential RMA against microbial resistance caused by the MsrA efflux pump.

Identification of Onosma visianii Roots Extract and Purified Shikonin Derivatives as Potential Acaricidal Agents against Tetranychus urticae.[Pubmed: 28621748 ]

Molecules. 2017 Jun 16;22(6). pii: E1002.

There is an increasing need for the discovery of reliable and eco-friendly pesticides and natural plant-derived products may play a crucial role as source of new active compounds.
METHODS AND RESULTS:
In this research, a lipophilic extract of Onosma visianii roots extract containing 12% of shikonin derivatives demonstrated significant toxicity and inhibition of oviposition against Tetranychus urticae mites. Extensive chromatographic separation allowed the isolation of 11 naphthoquinone derivatives that were identified by spectral techniques and were tested against Tetranychus urticae.
CONCLUSIONS:
All the isolated compounds presented effects against the considered mite and isobutylshikonin (1) and Isovalerylshikonin (2) were the most active, being valuable model compounds for the study of new anti-mite agents.

Protocol of Isovalerylshikonin

Kinase Assay

Inhibition of c-MYC with involvement of ERK/JNK/MAPK and AKT pathways as a novel mechanism for shikonin and its derivatives in killing leukemia cells.[Pubmed: 26472107 ]

Oncotarget. 2015 Nov 17;6(36):38934-51.

Leukemia remains life-threatening despite remarkable advances in chemotherapy. The poor prognosis and drug resistance are challenging treatment. Novel drugs are urgently needed. Shikonin, a natural naphthoquinone, has been previously shown by us to be particularly effective towards various leukemia cell lines compared to solid tumors. However, the underlying mechanisms are still poorly understood.
METHODS AND RESULTS:
Here, we investigated shikonin and 14 derivatives on U937 leukemia cells. Four derivatives (isobutyrylshikonin, 2-methylbutyrylshikonin, Isovalerylshikonin and β,β-dimethylacrylshikonin) were more active than shikonin. AnnexinV-PI analysis revealed that shikonins induced apoptosis. Cell cycle G1/S check point regulation and the transcription factor c-MYC, which plays a vital role in cell cycle regulation and proliferation, were identified as the most commonly down-regulated mechanisms upon treatment with shikonins in mRNA microarray hybridizations. Western blotting and DNA-binding assays confirmed the inhibition of c-MYC expression and transcriptional activity by shikonins. Reduction of c-MYC expression was closely associated with deregulated ERK, JNK MAPK and AKT activity, indicating their involvement in shikonin-triggered c-MYC inactivation. Molecular docking studies revealed that shikonin and its derivatives bind to the same DNA-binding domain of c-MYC as the known c-MYC inhibitors 10058-F4 and 10074-G5. This finding indicates that shikonins bind to c-MYC. The effect of shikonin on U937 cells was confirmed in other leukemia cell lines (Jurkat, Molt4, CCRF-CEM, and multidrug-resistant CEM/ADR5000), where shikonin also inhibited c-MYC expression and influenced phosphorylation of AKT, ERK1/2, and SAPK/JNK.
CONCLUSIONS:
In summary, inhibition of c-MYC and related pathways represents a novel mechanism of shikonin and its derivatives to explain their anti-leukemic activity.

Cell Research

Acetylshikonin, a Novel AChE Inhibitor, Inhibits Apoptosis via Upregulation of Heme Oxygenase-1 Expression in SH-SY5Y Cells.[Pubmed: 24302971 ]

Evid Based Complement Alternat Med. 2013;2013:937370.

Acetylcholinesterase inhibitors are prominent alternative in current clinical treatment for AD patients. Therefore, there is a continued need to search for novel AChEIs with good clinical efficacy and less side effects.
METHODS AND RESULTS:
By using our in-house natural product database and AutoDock Vina as a tool in docking study, we have identified twelve phytochemicals (emodin, aloe-emodin, chrysophanol, and rhein in Rhei Radix Et Rhizoma; xanthotoxin, phellopterin, alloisoimperatorin, and imperatorin in Angelicae dahuricae Radix; shikonin, acetylshikonin, Isovalerylshikonin, and β,β-dimethylacrylshikonin in Arnebiae Radix) as candidates of AChEIs that were not previously reported in the literature. In addition to AChEI activity, a series of cell-based experiments were conducted for the investigation of their neuroprotective activities. We found that acetylshikonin and its derivatives prevented apoptotic cell death induced by hydrogen peroxide in human and rat neuronal SH-SY5Y and PC12 cells at 10 μM.
CONCLUSIONS:
We showed that acetylshikonin exhibited the most potent antiapoptosis activity through the inhibition of the generation of reactive oxygen species as well as protection of the loss of mitochondria membrane potential. Furthermore, we identified for the first time that the upregulation of heme oxygenase 1 by acetylshikonin is a key step mediating its antiapoptotic activity from oxidative stress in SH-SY5Y cells.

Isovalerylshikonin Dilution Calculator

Concentration (start)
x
Volume (start)
=
Concentration (final)
x
Volume (final)
 
 
 
C1
V1
C2
V2

calculate

Isovalerylshikonin Molarity Calculator

Mass
=
Concentration
x
Volume
x
MW*
 
 
 
g/mol

calculate

Preparing Stock Solutions of Isovalerylshikonin

1 mg 5 mg 10 mg 20 mg 25 mg
1 mM 2.6853 mL 13.4264 mL 26.8528 mL 53.7057 mL 67.1321 mL
5 mM 0.5371 mL 2.6853 mL 5.3706 mL 10.7411 mL 13.4264 mL
10 mM 0.2685 mL 1.3426 mL 2.6853 mL 5.3706 mL 6.7132 mL
50 mM 0.0537 mL 0.2685 mL 0.5371 mL 1.0741 mL 1.3426 mL
100 mM 0.0269 mL 0.1343 mL 0.2685 mL 0.5371 mL 0.6713 mL
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations.

Organizitions Citing Our Products recently

 
 
 

Calcutta University

University of Minnesota

University of Maryland School of Medicine

University of Illinois at Chicago

The Ohio State University

University of Zurich

Harvard University

Colorado State University

Auburn University

Yale University

Worcester Polytechnic Institute

Washington State University

Stanford University

University of Leipzig

Universidade da Beira Interior

The Institute of Cancer Research

Heidelberg University

University of Amsterdam

University of Auckland
TsingHua University
TsingHua University
The University of Michigan
The University of Michigan
Miami University
Miami University
DRURY University
DRURY University
Jilin University
Jilin University
Fudan University
Fudan University
Wuhan University
Wuhan University
Sun Yat-sen University
Sun Yat-sen University
Universite de Paris
Universite de Paris
Deemed University
Deemed University
Auckland University
Auckland University
The University of Tokyo
The University of Tokyo
Korea University
Korea University
Featured Products
New Products
 

Keywords:

Isovalerylshikonin,52387-14-1,76549-35-4,Natural Products, buy Isovalerylshikonin , Isovalerylshikonin supplier , purchase Isovalerylshikonin , Isovalerylshikonin cost , Isovalerylshikonin manufacturer , order Isovalerylshikonin , high purity Isovalerylshikonin

Online Inquiry for:

      Fill out the information below

      • Size:Qty: - +

      * Required Fields

                                      Result: