IsowighteoneCAS# 68436-47-5 |
2D Structure
Quality Control & MSDS
3D structure
Package In Stock
Number of papers citing our products
Cas No. | 68436-47-5 | SDF | Download SDF |
PubChem ID | 5494866 | Appearance | Yellow powder |
Formula | C20H18O5 | M.Wt | 338.4 |
Type of Compound | Flavonoids | Storage | Desiccate at -20°C |
Solubility | Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc. | ||
Chemical Name | 5,7-dihydroxy-3-[4-hydroxy-3-(3-methylbut-2-enyl)phenyl]chromen-4-one | ||
SMILES | CC(=CCC1=C(C=CC(=C1)C2=COC3=CC(=CC(=C3C2=O)O)O)O)C | ||
Standard InChIKey | SWDSVBNAMCDHTF-UHFFFAOYSA-N | ||
Standard InChI | InChI=1S/C20H18O5/c1-11(2)3-4-13-7-12(5-6-16(13)22)15-10-25-18-9-14(21)8-17(23)19(18)20(15)24/h3,5-10,21-23H,4H2,1-2H3 | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Description | 1. Isowighteone, a compound that is not naturally produced in this species, accumulated by medicago truncatula hairy roots expressing LaPT1, indicates a strategy for metabolic engineering of novel antimicrobial compounds in legumes; it may have antimicrobial activity against fungal pathogens of plants. |
Targets | Antifection |
Isowighteone Dilution Calculator
Isowighteone Molarity Calculator
1 mg | 5 mg | 10 mg | 20 mg | 25 mg | |
1 mM | 2.9551 mL | 14.7754 mL | 29.5508 mL | 59.1017 mL | 73.8771 mL |
5 mM | 0.591 mL | 2.9551 mL | 5.9102 mL | 11.8203 mL | 14.7754 mL |
10 mM | 0.2955 mL | 1.4775 mL | 2.9551 mL | 5.9102 mL | 7.3877 mL |
50 mM | 0.0591 mL | 0.2955 mL | 0.591 mL | 1.182 mL | 1.4775 mL |
100 mM | 0.0296 mL | 0.1478 mL | 0.2955 mL | 0.591 mL | 0.7388 mL |
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations. |
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- PPDA
Catalog No.:BCC5918
CAS No.:684283-16-7
- Timosaponin AI
Catalog No.:BCN7819
CAS No.:68422-00-4
- 6',7'-Dihydroxybergamottin acetonide
Catalog No.:BCN4242
CAS No.:684217-08-1
- 20-O-Glucoginsenoside Rf
Catalog No.:BCN8220
CAS No.:68406-27-9
- Ginsenoside Rb3
Catalog No.:BCN1065
CAS No.:68406-26-8
- Kuwanon E
Catalog No.:BCN3287
CAS No.:68401-05-8
- Curassavine
Catalog No.:BCN1964
CAS No.:68385-70-6
- JNJ 5207787
Catalog No.:BCC6100
CAS No.:683746-68-1
- Sulbactam
Catalog No.:BCC4941
CAS No.:68373-14-8
- Micheliolide
Catalog No.:BCN8257
CAS No.:68370-47-8
- 7-Methoxy-1-naphthaleneacetic acid
Catalog No.:BCN2243
CAS No.:6836-22-2
- 7-Methoxy-1-naphthaleneacetic acid ethyl ester
Catalog No.:BCN1379
CAS No.:6836-21-1
- 4-(p-Biphenylyl)-3-hydroxybutyric acid
Catalog No.:BCN2240
CAS No.:6845-17-6
- Heliovicine
Catalog No.:BCN2047
CAS No.:68473-85-8
- Coromandaline
Catalog No.:BCN2044
CAS No.:68473-86-9
- WS 12
Catalog No.:BCC7543
CAS No.:68489-09-8
- Pramiracetam
Catalog No.:BCC4928
CAS No.:68497-62-1
- Vigabatrin
Catalog No.:BCC2039
CAS No.:68506-86-5
- Angiotensin II
Catalog No.:BCC1030
CAS No.:68521-88-0
- Isoguvacine hydrochloride
Catalog No.:BCC6575
CAS No.:68547-97-7
- Cilostamide
Catalog No.:BCC6843
CAS No.:68550-75-4
- GSK 264220A
Catalog No.:BCC6062
CAS No.:685506-42-7
- Eupatoriopicrin
Catalog No.:BCN7116
CAS No.:6856-01-5
- Pridinol Methanesulfonate
Catalog No.:BCC3845
CAS No.:6856-31-1
Characterization of an isoflavonoid-specific prenyltransferase from Lupinus albus.[Pubmed:22430842]
Plant Physiol. 2012 May;159(1):70-80.
Prenylated flavonoids and isoflavonoids possess antimicrobial activity against fungal pathogens of plants. However, only a few plant flavonoid and isoflavonoid prenyltransferase genes have been identified to date. In this study, an isoflavonoid prenyltransferase gene, designated as LaPT1, was identified from white lupin (Lupinus albus). The deduced protein sequence of LaPT1 shared high homologies with known flavonoid and isoflavonoid prenyltransferases. The LaPT1 gene was mainly expressed in roots, a major site for constitutive accumulation of prenylated isoflavones in white lupin. LaPT1 is predicted to be a membrane-bound protein with nine transmembrane regions and conserved functional domains similar to other flavonoid and isoflavonoid prenyltransferases; it has a predicted chloroplast transit peptide and is plastid localized. A microsomal fraction containing recombinant LaPT1 prenylated the isoflavone genistein at the B-ring 3' position to produce Isowighteone. The enzyme is also active with 2'-hydroxygenistein but has no activity with other flavonoid substrates. The apparent K(m) of recombinant LaPT1 for the dimethylallyl diphosphate prenyl donor is in a similar range to that of other flavonoid prenyltransferases, but the apparent catalytic efficiency with genistein is considerably higher. Removal of the transit peptide increased the apparent overall activity but also increased the K(m). Medicago truncatula hairy roots expressing LaPT1 accumulated Isowighteone, a compound that is not naturally produced in this species, indicating a strategy for metabolic engineering of novel antimicrobial compounds in legumes.