Home >> Research Area >>Natural Products>> Manzamine A

Manzamine A

CAS# 104196-68-1

Manzamine A

2D Structure

Catalog No. BCX0635----Order now to get a substantial discount!

Product Name & Size Price Stock
Manzamine A: 5mg Please Inquire In Stock
Manzamine A: 10mg Please Inquire In Stock
Manzamine A: 20mg Please Inquire Please Inquire
Manzamine A: 50mg Please Inquire Please Inquire
Manzamine A: 100mg Please Inquire Please Inquire
Manzamine A: 200mg Please Inquire Please Inquire
Manzamine A: 500mg Please Inquire Please Inquire
Manzamine A: 1000mg Please Inquire Please Inquire

Quality Control of Manzamine A

3D structure

Package In Stock

Manzamine A

Number of papers citing our products

Chemical Properties of Manzamine A

Cas No. 104196-68-1 SDF Download SDF
PubChem ID 154730828.0 Appearance Powder
Formula C36H44N4O M.Wt 548.76
Type of Compound N/A Storage Desiccate at -20°C
Solubility Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc.
Chemical Name (1R,2R,4R,12R,13S,16E)-25-(9H-pyrido[3,4-b]indol-1-yl)-11,22-diazapentacyclo[11.11.2.12,22.02,12.04,11]heptacosa-5,16,25-trien-13-ol
SMILES C1CCN2CCC3C(=CC(CCC=CC1)(C4C3(C2)CC5N4CCCCC=C5)O)C6=NC=CC7=C6NC8=CC=CC=C78
Standard InChIKey FUCSLKWLLSEMDQ-SFMPPMLESA-N
Standard InChI InChI=1S/C36H44N4O/c41-36-18-10-4-1-2-5-11-20-39-22-17-30(35(25-39)23-26-13-7-3-6-12-21-40(26)34(35)36)29(24-36)32-33-28(16-19-37-32)27-14-8-9-15-31(27)38-33/h1,4,7-9,13-16,19,24,26,30,34,38,41H,2-3,5-6,10-12,17-18,20-23,25H2/b4-1+,13-7?/t26-,30-,34+,35-,36-/m0/s1
General tips For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months.
We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months.
Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it.
About Packaging 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial.
2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial.
3. Try to avoid loss or contamination during the experiment.
Shipping Condition Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request.

Manzamine A Dilution Calculator

Concentration (start)
x
Volume (start)
=
Concentration (final)
x
Volume (final)
 
 
 
C1
V1
C2
V2

calculate

Manzamine A Molarity Calculator

Mass
=
Concentration
x
Volume
x
MW*
 
 
 
g/mol

calculate

Preparing Stock Solutions of Manzamine A

1 mg 5 mg 10 mg 20 mg 25 mg
1 mM 1.8223 mL 9.1115 mL 18.2229 mL 36.4458 mL 45.5573 mL
5 mM 0.3645 mL 1.8223 mL 3.6446 mL 7.2892 mL 9.1115 mL
10 mM 0.1822 mL 0.9111 mL 1.8223 mL 3.6446 mL 4.5557 mL
50 mM 0.0364 mL 0.1822 mL 0.3645 mL 0.7289 mL 0.9111 mL
100 mM 0.0182 mL 0.0911 mL 0.1822 mL 0.3645 mL 0.4556 mL
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations.

Organizitions Citing Our Products recently

 
 
 

Calcutta University

University of Minnesota

University of Maryland School of Medicine

University of Illinois at Chicago

The Ohio State University

University of Zurich

Harvard University

Colorado State University

Auburn University

Yale University

Worcester Polytechnic Institute

Washington State University

Stanford University

University of Leipzig

Universidade da Beira Interior

The Institute of Cancer Research

Heidelberg University

University of Amsterdam

University of Auckland
TsingHua University
TsingHua University
The University of Michigan
The University of Michigan
Miami University
Miami University
DRURY University
DRURY University
Jilin University
Jilin University
Fudan University
Fudan University
Wuhan University
Wuhan University
Sun Yat-sen University
Sun Yat-sen University
Universite de Paris
Universite de Paris
Deemed University
Deemed University
Auckland University
Auckland University
The University of Tokyo
The University of Tokyo
Korea University
Korea University
Featured Products
New Products
 

References on Manzamine A

Manzamine A reduces androgen receptor transcription and synthesis by blocking E2F8-DNA interactions and effectively inhibits prostate tumor growth in mice.[Pubmed:38605607]

Mol Oncol. 2024 Apr 11.

The androgen receptor (AR) is the main driver in the development of castration-resistant prostate cancer, where the emergence of AR splice variants leads to treatment-resistant disease. Through detailed molecular studies of the marine alkaloid Manzamine A (MA), we identified transcription factor E2F8 as a previously unknown regulator of AR transcription that prevents AR synthesis in prostate cancer cells. MA significantly inhibited the growth of various prostate cancer cell lines and was highly effective in inhibiting xenograft tumor growth in mice without any pathophysiological perturbations in major organs. MA suppressed the full-length AR (AR-FL), its spliced variant AR-V7, and the AR-regulated prostate-specific antigen (PSA; also known as KLK3) and human kallikrein 2 (hK2; also known as KLK2) genes. RNA sequencing (RNA-seq) analysis and protein modeling studies revealed E2F8 interactions with DNA as a potential novel target of MA, suppressing AR transcription and its synthesis. This novel mechanism of blocking AR biogenesis via E2F8 may provide an opportunity to control therapy-resistant prostate cancer over the currently used AR antagonists designed to target different parts of the AR gene.

The potential of some functional group compounds substituted 8-Manzamine A as RSK1 inhibitors: molecular docking and molecular dynamics simulations.[Pubmed:38319051]

J Biomol Struct Dyn. 2024 Feb 6:1-10.

Cancer, an incurable global disease, demands urgent anti-cancer drug development. Marine alkaloids like Manzamine And its derivatives show promise as RSK inhibitors against cancer cell invasion. Replacing the hydrogen at the 8-position of Manzamine A with a hydroxyl group has been shown to significantly enhance its biological activity. In this article, we designed various functional group compounds (A1-A21) substituted 8-Manzamine A by docking, MM-GBSA, molecular dynamics (MD) simulation, and well-tempered metadynamics (WT-MetaD) simulations to evaluate their potential as RSK1 inhibitors. Ligands A1-A21 were docked in the RSK1 N-terminal kinase domain (PDB ID: 2Z7Q) using the Glide module. The calculation of binding energy was performed using Prime MM-GB/SA, while MD simulations were conducted with the Desmond module of Schrodinger suite 2023. Compound A5 exhibits the highest G-score (-7.01) compared to 8-HydroxyManzamine A (-6.08). Additionally, compounds A6, A10, A12, A17, A11, A4, and A13 demonstrate increased activity against RSK1 when compared to both 8-HydroxyManzamine A and Manzamine A. Residues LEU68, VAL76, LEU141, PHE143, LEU144, PHE150, ASP148, GLU191, and LEU194 of RSK1 protein play a key role in binding with ligands. An MD simulation of Compound A5 was carried out to explore the dynamic interactions within the protein-ligand complex. Furthermore, WT-MetaD simulations validated the docking study results and identified the most energetically favored conformations for the A5/RSK1 complex. Ligands A5, A6, A10, A12, A17, A11, A4, and A13, featuring diverse functional groups and good Glide scores, may have the potential for significant RSK1 activity and merit further development.Communicated by Ramaswamy H. Sarma.

Indonesian marine and its medicinal contribution.[Pubmed:37843645]

Nat Prod Bioprospect. 2023 Oct 16;13(1):38.

The archipelagic country of Indonesia is populated by the densest marine biodiversity in the world which has created strong global interest and is valued by both Indigenous and European settlements for different purposes. Nearly 1000 chemicals have been extracted and identified. In this review, a systematic data curation was employed to collate bioprospecting related manuscripts providing a comprehensive directory based on publications from 1988 to 2022. Findings with significant pharmacological activities are further discussed through a scoping data collection. This review discusses macroorganisms (Sponges, Ascidian, Gorgonians, Algae, Mangrove) and microorganism (Bacteria and Fungi) and highlights significant discoveries, including a potent microtubule stabilizer laulimalide from Hyattella sp., a prospective doxorubicin complement papuamine alkaloid from Neopetrosia cf exigua, potent antiplasmodial Manzamine A from Acanthostrongylophora ingens, the highly potent anti trypanosomal manadoperoxide B from Plakortis cfr. Simplex, mRNA translation disrupter hippuristanol from Briareum sp, and the anti-HIV-1 (+)-8-hydroxyManzamine A isolated from Acanthostrongylophora sp. Further, some potent antibacterial extracts were also found from a limited biomass of bacteria cultures. Although there are currently no examples of commercial drugs from the Indonesian marine environment, this review shows the molecular diversity present and with the known understudied biodiversity, reveals great promise for future studies and outcomes.

Oxidative stress mediates the inhibitory effects of Manzamine A on uterine leiomyoma cell proliferation and extracellular matrix deposition via SOAT inhibition.[Pubmed:37666118]

Redox Biol. 2023 Oct;66:102861.

Uterine fibroids, the most common benign tumors of the myometrium in women, are characterized by abnormal extracellular matrix deposition and uterine smooth muscle cell neoplasia, with high recurrence rates. Here, we investigated the potential of the marine natural product Manzamine A (Manz A), which has potent anti-cancer effects, as a treatment for uterine fibroids. Manz A inhibited leiomyoma cell proliferation in vitro and in vivo by arresting cell cycle progression and inducing caspase-mediated apoptosis. We performed target prediction analysis and identified sterol o-acyltransferases (SOATs) as potential targets of Manz A. Cholesterol esterification and lipid droplet formation were reduced by Manz A, in line with reduced SOAT expression. As a downstream target of SOAT, Manz A also prevented extracellular matrix deposition by inhibiting the beta-catenin/fibronectin/metalloproteinases axis and enhanced autophagy turnover. Excessive free fatty acid accumulation by SOAT inhibition led to reactive oxygen species to impair mitochondrial oxidative phosphorylation and trigger endoplasmic reticulum stress via PERK/eIF2alpha/CHOP signaling. The inhibitory effect of ManzA on cell proliferation was partially restored by PERK knockdown and eliminated by tauroursodeoxycholic acid, suggesting oxidative stress plays a critical role in the mechanism of action of Manz A. These findings suggest that targeting SOATs by Manz A may be a promising therapeutic approach for uterine fibroids.

Bioinformatics screening of colorectal-cancer causing molecular signatures through gene expression profiles to discover therapeutic targets and candidate agents.[Pubmed:36991484]

BMC Med Genomics. 2023 Mar 29;16(1):64.

BACKGROUND: Detection of appropriate receptor proteins and drug agents are equally important in the case of drug discovery and development for any disease. In this study, an attempt was made to explore colorectal cancer (CRC) causing molecular signatures as receptors and drug agents as inhibitors by using integrated statistics and bioinformatics approaches. METHODS: To identify the important genes that are involved in the initiation and progression of CRC, four microarray datasets (GSE9348, GSE110224, GSE23878, and GSE35279) and an RNA_Seq profiles (GSE50760) were downloaded from the Gene Expression Omnibus database. The datasets were analyzed by a statistical r-package of LIMMA to identify common differentially expressed genes (cDEGs). The key genes (KGs) of cDEGs were detected by using the five topological measures in the protein-protein interaction network analysis. Then we performed in-silico validation for CRC-causing KGs by using different web-tools and independent databases. We also disclosed the transcriptional and post-transcriptional regulatory factors of KGs by interaction network analysis of KGs with transcription factors (TFs) and micro-RNAs. Finally, we suggested our proposed KGs-guided computationally more effective candidate drug molecules compared to other published drugs by cross-validation with the state-of-the-art alternatives of top-ranked independent receptor proteins. RESULTS: We identified 50 common differentially expressed genes (cDEGs) from five gene expression profile datasets, where 31 cDEGs were downregulated, and the rest 19 were up-regulated. Then we identified 11 cDEGs (CXCL8, CEMIP, MMP7, CA4, ADH1C, GUCA2A, GUCA2B, ZG16, CLCA4, MS4A12 and CLDN1) as the KGs. Different pertinent bioinformatic analyses (box plot, survival probability curves, DNA methylation, correlation with immune infiltration levels, diseases-KGs interaction, GO and KEGG pathways) based on independent databases directly or indirectly showed that these KGs are significantly associated with CRC progression. We also detected four TFs proteins (FOXC1, YY1, GATA2 and NFKB) and eight microRNAs (hsa-mir-16-5p, hsa-mir-195-5p, hsa-mir-203a-3p, hsa-mir-34a-5p, hsa-mir-107, hsa-mir-27a-3p, hsa-mir-429, and hsa-mir-335-5p) as the key transcriptional and post-transcriptional regulators of KGs. Finally, our proposed 15 molecular signatures including 11 KGs and 4 key TFs-proteins guided 9 small molecules (Cyclosporin A, Manzamine A, Cardidigin, Staurosporine, Benzo[A]Pyrene, Sitosterol, Nocardiopsis Sp, Troglitazone, and Riccardin D) were recommended as the top-ranked candidate therapeutic agents for the treatment against CRC. CONCLUSION: The findings of this study recommended that our proposed target proteins and agents might be considered as the potential diagnostic, prognostic and therapeutic signatures for CRC.

RIP1 Mediates Manzamine-A-Induced Secretory Autophagy in Breast Cancer.[Pubmed:36976201]

Mar Drugs. 2023 Feb 25;21(3):151.

Cancer-derived small extracellular vesicles (sEVs) serve as critical mediators of cell-to-cell communication. Manzamine A (MA), a unique marine-derived alkaloid with various bioactivities, exerts anticancer effects against several kinds of tumors, but it remains unclear whether it has the same activity against breast cancer. Here, we proved that MA inhibits MDA-MB-231 and MCF-7 cell proliferation, migration, and invasion in a time- and dose-dependent manner. In addition, MA promotes autophagosome formation but suppresses autophagosome degradation in breast cancer cells. Importantly, we also found that MA stimulates sEVs secretion and increases autophagy-related protein accumulation in secreted sEVs, further potentiated by autophagy inhibitor chloroquine (CQ). Mechanistically, MA decreases the expression level of RIP1, the key upstream regulator of the autophagic pathway, and reduces the acidity of lysosome. Overexpression of RIP1 activated AKT/mTOR signaling, thus attenuating MA-induced autophagy and the corresponding secretion of autophagy-associated sEVs. Collectively, these data suggested that MA is a potential inhibitor of autophagy by preventing autophagosome turnover, and RIP1 mediates MA-induced secretory autophagy, which may be efficacious for breast cancer treatment.

Exploring Core Genes by Comparative Transcriptomics Analysis for Early Diagnosis, Prognosis, and Therapies of Colorectal Cancer.[Pubmed:36900162]

Cancers (Basel). 2023 Feb 21;15(5):1369.

Colorectal cancer (CRC) is one of the most common cancers with a high mortality rate. Early diagnosis and therapies for CRC may reduce the mortality rate. However, so far, no researchers have yet investigated core genes (CGs) rigorously for early diagnosis, prognosis, and therapies of CRC. Therefore, an attempt was made in this study to explore CRC-related CGs for early diagnosis, prognosis, and therapies. At first, we identified 252 common differentially expressed genes (cDEGs) between CRC and control samples based on three gene-expression datasets. Then, we identified ten cDEGs (AURKA, TOP2A, CDK1, PTTG1, CDKN3, CDC20, MAD2L1, CKS2, MELK, and TPX2) as the CGs, highlighting their mechanisms in CRC progression. The enrichment analysis of CGs with GO terms and KEGG pathways revealed some crucial biological processes, molecular functions, and signaling pathways that are associated with CRC progression. The survival probability curves and box-plot analyses with the expressions of CGs in different stages of CRC indicated their strong prognostic performance from the earlier stage of the disease. Then, we detected CGs-guided seven candidate drugs (Manzamine A, Cardidigin, Staurosporine, Sitosterol, Benzo[a]pyrene, Nocardiopsis sp., and Riccardin D) by molecular docking. Finally, the binding stability of four top-ranked complexes (TPX2 vs. Manzamine A, CDC20 vs. Cardidigin, MELK vs. Staurosporine, and CDK1 vs. Riccardin D) was investigated by using 100 ns molecular dynamics simulation studies, and their stable performance was observed. Therefore, the output of this study may play a vital role in developing a proper treatment plan at the earlier stages of CRC.

Marine-Based Candidates as Potential RSK1 Inhibitors: A Computational Study.[Pubmed:36615396]

Molecules. 2022 Dec 26;28(1):202.

Manzamines are chemically related compounds extracted from the methanolic extract of Acanthostrongylophora ingens species. Seven compounds were identified by our research group and are being characterized. As their biological target is unknown, this work is based on previous screening work performed by Mayer et al., who revealed that Manzamine A could be an inhibitor of RSK1 kinase. Within this work, the RSK1 N-terminal kinase domain is exploited as a target for our work and the seven compounds are docked using Autodock Vina software. The results show that one of the most active compounds, Manzamine A N-oxide (5), with an IC(50) = 3.1 muM, displayed the highest docking score. In addition, the compounds with docking scores lower than the co-crystalized ligand AMP-PCP (-7.5 and -8.0 kcal/mol) for ircinial E (1) and nakadomarin A (7) were found to be inferior in activity in the biological assay. The docking results successfully managed to predict the activities of four compounds, and their in silico results were in concordance with their biological data. The beta-carboline ring showed noticeable receptor binding, which could explain its reported biological activities, while the lipophilic side of the compound was found to fit well inside the hydrophobic active site.

Manzamine-A Alters In Vitro Calvarial Osteoblast Function.[Pubmed:36286470]

Mar Drugs. 2022 Oct 19;20(10):647.

Manzamine-A is a marine-derived alkaloid which has anti-viral and anti-proliferative properties and is currently being investigated for its efficacy in the treatment of certain viruses (malaria, herpes, HIV-1) and cancers (breast, cervical, colorectal). Manzamine-A has been found to exert effects via modulation of SIX1 gene expression, a gene critical to craniofacial development via the WNT, NOTCH, and PI3K/AKT pathways. To date little work has focused on Manzamine-A and how its use may affect bone. We hypothesize that Manzamine-A, through SIX1, alters bone cell activity. Here, we assessed the effects of Manzamine-A on cells that are responsible for the generation of bone, pre-osteoblasts and osteoblasts. PCR, qrtPCR, MTS cell viability, Caspase 3/7, and functional assays were used to test the effects of Manzamine-A on these cells. Our data suggests Six1 is highly expressed in osteoblasts and their progenitors. Further, osteoblast progenitors and osteoblasts exhibit great sensitivity to Manzamine-A treatment exhibited by a significant decrease in cell viability, increase in cellular apoptosis, and decrease in alkaline phosphatase activity. In silico binding experiment showed that Manzamine A potential as an inhibitor of cell proliferation and survival proteins, i.e., Ikappab, JAK2, AKT, PKC, FAK, and Bcl-2. Overall, our data suggests Manzamine-A may have great effects on bone health overall and may disrupt skeletal development, homeostasis, and repair.

Integrated bioinformatics-cheminformatics approach toward locating pseudo-potential antiviral marine alkaloids against SARS-CoV-2-Mpro.[Pubmed:35384056]

Proteins. 2022 Sep;90(9):1617-1633.

The emergence of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) with the most contagious variants, alpha (B.1.1.7), beta (B.1.351), delta (B.1.617.2), and Omicron (B.1.1.529) has continuously added a higher number of morbidity and mortality, globally. The present integrated bioinformatics-cheminformatics approach was employed to locate potent antiviral marine alkaloids that could be used against SARS-CoV-2. Initially, 57 antiviral marine alkaloids and two repurposing drugs were selected from an extensive literature review. Then, the putative target enzyme SARS-CoV-2 main protease (SARS-CoV-2-Mpro) was retrieved from the protein data bank and carried out a virtual screening-cum-molecular docking study with all candidates using PyRx 0.8 and AutoDock 4.2 software. Further, the molecular dynamics (MD) simulation of the two most potential alkaloids and a drug docking complex at 100 ns (with two ligand topology files from PRODRG and ATB server, separately), the molecular mechanics/Poisson-Boltzmann surface area (MM/PBSA) free energy, and contributions of entropy were investigated. Then, the physicochemical-toxicity-pharmacokinetics-drug-likeness profiles, the frontier molecular orbitals energies (highest occupied molecular orbital, lowest unoccupied molecular orbital, and DeltaE), and structural-activity relationship were assessed and analyzed. Based on binding energy, 8-hydroxymanzamine (-10.5 kcal/mol) and Manzamine A (-10.1 kcal/mol) from all alkaloids with darunavir (-7.9 kcal/mol) and lopinavir (-7.4 kcal/mol) against SARS-CoV-2-Mpro were recorded. The MD simulation (RMSD, RMSF, Rg, H-bond, MM/PBSA binding energy) illustrated that the 8-hydroxymanzamine exhibits a static thermodynamic feature than the other two complexes. The predicted physicochemical, toxicity, pharmacokinetics, and drug-likeness profiles also revealed that the 8-hydroxymanzamine could be used as a potential lead candidate individually and/or synergistically with darunavir or lopinavir to combat SARS-CoV-2 infection after some pharmacological validation.

High-Content C. elegans Screen Identifies Natural Compounds Impacting Mitochondria-Lipid Homeostasis and Promoting Healthspan.[Pubmed:35011662]

Cells. 2021 Dec 29;11(1):100.

The aging process is concurrently shaped by genetic and extrinsic factors. In this work, we screened a small library of natural compounds, many of marine origin, to identify novel possible anti-aging interventions in Caenorhabditis elegans, a powerful model organism for aging studies. To this aim, we exploited a high-content microscopy platform to search for interventions able to induce phenotypes associated with mild mitochondrial stress, which is known to promote animal's health- and lifespan. Worms were initially exposed to three different concentrations of the drugs in liquid culture, in search of those affecting animal size and expression of mitochondrial stress response genes. This was followed by a validation step with nine compounds on solid media to refine compounds concentration, which led to the identification of four compounds (namely isobavachalcone, Manzamine A, kahalalide F and lutein) consistently affecting development, fertility, size and lipid content of the nematodes. Treatment of Drosophila cells with the four hits confirmed their effects on mitochondria activity and lipid content. Out of these four, two were specifically chosen for analysis of age-related parameters, kahalalide F and lutein, which conferred increased resistance to heat and oxidative stress and extended animals' healthspan. We also found that, out of different mitochondrial stress response genes, only the C. elegans ortholog of the synaptic regulatory proteins neuroligins, nlg-1, was consistently induced by the two compounds and mediated lutein healthspan effects.

RSK1 vs. RSK2 Inhibitory Activity of the Marine beta-Carboline Alkaloid Manzamine A: A Biochemical, Cervical Cancer Protein Expression, and Computational Study.[Pubmed:34564169]

Mar Drugs. 2021 Sep 7;19(9):506.

Manzamines are complex polycyclic marine-derived beta-carboline alkaloids with reported anticancer, immunostimulatory, anti-inflammatory, antibacterial, antiviral, antimalarial, neuritogenic, hyperlipidemia, and atherosclerosis suppression bioactivities, putatively associated with inhibition of glycogen synthase kinase-3, cyclin-dependent kinase 5, SIX1, and vacuolar ATPases. We hypothesized that additional, yet undiscovered molecular targets might be associated with Manzamine A's (MZA) reported pharmacological properties. We report here, for the first time, that MZA selectively inhibited a 90 kDa ribosomal protein kinase S6 (RSK1) when screened against a panel of 30 protein kinases, while in vitro RSK kinase assays demonstrated a 10-fold selectivity in the potency of MZA against RSK1 versus RSK2. The effect of MZA on inhibiting cellular RSK1 and RSK2 protein expression was validated in SiHa and CaSki human cervical carcinoma cell lines. MZA's differential binding and selectivity toward the two isoforms was also supported by computational docking experiments. Specifically, the RSK1-MZA (N- and C-termini) complexes appear to have stronger interactions and preferable energetics contrary to the RSK2-MZA ones. In addition, our computational strategy suggests that MZA binds to the N-terminal kinase domain of RSK1 rather than the C-terminal domain. RSK is a vertebrate family of cytosolic serine-threonine kinases that act downstream of the ras-ERK1/2 (extracellular-signal-regulated kinase 1/2) pathway, which phosphorylates substrates shown to regulate several cellular processes, including growth, survival, and proliferation. Consequently, our findings have led us to hypothesize that MZA and the currently known manzamine-type alkaloids isolated from several sponge genera may have novel pharmacological properties with unique molecular targets, and MZA provides a new tool for chemical-biology studies involving RSK1.

Model-Free Approach for the Configurational Analysis of Marine Natural Products.[Pubmed:34063741]

Mar Drugs. 2021 May 21;19(6):283.

The NMR-based configurational analysis of complex marine natural products is still not a routine task. Different NMR parameters are used for the assignment of the relative configuration: NOE/ROE, homo- and heteronuclear J couplings as well as anisotropic parameters. The combined distance geometry (DG) and distance bounds driven dynamics (DDD) method allows a model-free approach for the determination of the relative configuration that is invariant to the choice of an initial starting structure and does not rely on comparisons with (DFT) calculated structures. Here, we will discuss the configurational analysis of five complex marine natural products or synthetic derivatives thereof: the cis-palau'amine derivatives 1a and 1b, tetrabromostyloguanidine (1c), plakilactone H (2), and Manzamine A (3). The certainty of configurational assignments is evaluated in view of the accuracy of the NOE/ROE data available. These case studies will show the prospective breadth of application of the DG/DDD method.

The manzamine alkaloids.[Pubmed:32416951]

Alkaloids Chem Biol. 2020;84:1-124.

The Manzamine Alkaloids are absolutely one of the most fascinating marine natural products. The representative Manzamine Alkaloids, manzamines A-C, were isolated from a marine sponge Haliclona sp. collected off Cape Manzamo, Okinawa, Japan. The Manzamine Alkaloids are a unique class of alkaloids possessing a characteristic heterocyclic system, and exhibit a diverse range of bioactivities including cytotoxicity, antimicrobial activity, antimalarial activity, antiviral and antiinflammatory activities, antiinsecticidal activity, and proteasome inhibitory activity. About 100 Manzamine Alkaloids have been isolated from more than 16 species of marine sponges belonging to 5 families. The unusual ring systems, an intriguing suggested biogenetic pathway, and promising biological activities of Manzamine Alkaloids have attracted great interest as challenging targets for the total synthesis. This review is the continuation of the previous review published in volume 60 of The Alkaloids and covers isolation, structure elucidation, biosynthesis and biogenesis, chemical synthesis, and biological activity of Manzamine Alkaloids reported from 2003 to 2018.

Keywords:

Manzamine A,104196-68-1,Natural Products, buy Manzamine A , Manzamine A supplier , purchase Manzamine A , Manzamine A cost , Manzamine A manufacturer , order Manzamine A , high purity Manzamine A

Online Inquiry for:

      Fill out the information below

      • Size:Qty: - +

      * Required Fields

                                      Result: