Metastin (human)Potent, endogenous ligand for kisspeptin receptor CAS# 374683-24-6 |
2D Structure
- Cefoselis
Catalog No.:BCC4092
CAS No.:122841-10-5
- Cefoselis Sulfate
Catalog No.:BCC4769
CAS No.:122841-12-7
- Balofloxacin
Catalog No.:BCC4892
CAS No.:127294-70-6
- Pefloxacin Mesylate Dihydrate
Catalog No.:BCC5089
CAS No.:149676-40-4
- Toltrazuril
Catalog No.:BCC4870
CAS No.:69004-03-1
Quality Control & MSDS
3D structure
Package In Stock
Number of papers citing our products
Cas No. | 374683-24-6 | SDF | Download SDF |
PubChem ID | 90479791 | Appearance | Powder |
Formula | C258H401N79O78 | M.Wt | 5857.49 |
Type of Compound | N/A | Storage | Desiccate at -20°C |
Synonyms | Kisspeptin-54, Kp-54 | ||
Solubility | Soluble to 1 mg/ml in water | ||
Sequence | GTSLSPPPESSGSRQQPGLSAPHSRQIPAP (Modifications: Phe-54 = C-terminal amide) | ||
SMILES | CCC(C)C(C(=O)N1CCCC1C(=O)NC(C)C(=O)N2CCCC2C(=O)NC(CCC(=O)N)C(=O)NCC(=O)NC(C)C(=O)NC(C(C)C)C(=O)NC(CC(C)C)C(=O)NC(C(C)C)C(=O)NC(CCC(=O)N)C(=O)NC(CCCNC(=N)N)C(=O)NC(CCC(=O)O)C(=O)NC(CCCCN)C(=O)NC(CC(=O)O)C(=O)NC(CC(C)C)C(=O)N3CCCC3C(=O)NC(CC(=O)N)C(=O)NC(CC4=CC=C(C=C4)O)C(=O)NC(CC(=O)N)C(=O)NC(CC5=CNC6=CC=CC=C65)C(=O)NC(CC(=O)N)C(=O)NC(CO)C(=O)NC(CC7=CC=CC=C7)C(=O)NCC(=O)NC(CC(C)C)C(=O)NC(CCCNC(=N)N)C(=O)NC(CC8=CC=CC=C8)C(=O)N)NC(=O)C(CCC(=O)N)NC(=O)C(CCCNC(=N)N)NC(=O)C(CO)NC(=O)C(CC9=CNC=N9)NC(=O)C1CCCN1C(=O)C(C)NC(=O)C(CO)NC(=O)C(CC(C)C)NC(=O)CNC(=O)C1CCCN1C(=O)C(CCC(=O)N)NC(=O)C(CCC(=O)N)NC(=O)C(CCCNC(=N)N)NC(=O)C(CO)NC(=O)CNC(=O)C(CO)NC(=O)C(CO)NC(=O)C(CCC(=O)O)NC(=O)C1CCCN1C(=O)C1CCCN1C(=O)C1CCCN1C(=O)C(CO)NC(=O)C(CC(C)C)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)CN | ||
Standard InChIKey | KAHDONZOCXSKII-UHFFFAOYSA-N | ||
Standard InChI | InChI=1S/C258H401N79O78/c1-21-131(16)204(329-220(381)152(70-77-189(264)351)301-213(374)147(53-34-84-281-257(274)275)299-234(395)173(118-341)322-226(387)164(103-140-110-278-123-288-140)315-242(403)181-58-38-87-331(181)247(408)133(18)290-232(393)172(117-340)321-222(383)158(95-125(4)5)293-197(359)114-287-238(399)178-55-36-88-332(178)249(410)155(71-78-190(265)352)306-218(379)150(68-75-187(262)349)300-212(373)146(52-33-83-280-256(272)273)298-233(394)171(116-339)294-198(360)113-286-210(371)170(115-338)319-237(398)175(120-343)320-219(380)154(73-80-200(363)364)304-241(402)183-60-40-90-334(183)252(413)185-62-43-93-337(185)253(414)184-61-42-92-336(184)251(412)177(122-345)325-223(384)159(96-126(6)7)308-236(397)176(121-344)324-246(407)205(135(20)346)326-194(356)108-260)254(415)335-91-41-56-179(335)239(400)291-134(19)248(409)330-86-37-57-180(330)240(401)303-149(67-74-186(261)348)208(369)284-111-195(357)289-132(17)207(368)327-202(129(12)13)245(406)317-160(97-127(8)9)231(392)328-203(130(14)15)244(405)305-151(69-76-188(263)350)216(377)296-145(51-32-82-279-255(270)271)211(372)302-153(72-79-199(361)362)217(378)295-144(50-30-31-81-259)215(376)314-168(107-201(365)366)230(391)318-169(98-128(10)11)250(411)333-89-39-59-182(333)243(404)316-167(106-193(268)355)228(389)310-162(101-138-63-65-141(347)66-64-138)224(385)312-165(104-191(266)353)227(388)311-163(102-139-109-283-143-49-29-28-48-142(139)143)225(386)313-166(105-192(267)354)229(390)323-174(119-342)235(396)309-161(100-137-46-26-23-27-47-137)209(370)285-112-196(358)292-157(94-124(2)3)221(382)297-148(54-35-85-282-258(276)277)214(375)307-156(206(269)367)99-136-44-24-22-25-45-136/h22-29,44-49,63-66,109-110,123-135,144-185,202-205,283,338-347H,21,30-43,50-62,67-108,111-122,259-260H2,1-20H3,(H2,261,348)(H2,262,349)(H2,263,350)(H2,264,351)(H2,265,352)(H2,266,353)(H2,267,354)(H2,268,355)(H2,269,367)(H,278,288)(H,284,369)(H,285,370)(H,286,371)(H,287,399)(H,289,357)(H,290,393)(H,291,400)(H,292,358)(H,293,359)(H,294,360)(H,295,378)(H,296,377)(H,297,382)(H,298,394)(H,299,395)(H,300,373)(H,301,374)(H,302,372)(H,303,401)(H,304,402)(H,305,405)(H,306,379)(H,307,375)(H,308,397)(H,309,396)(H,310,389)(H,311,388)(H,312,385)(H,313,386)(H,314,376)(H,315,403)(H,316,404)(H,317,406)(H,318,391)(H,319,398)(H,320,380)(H,321,383)(H,322,387)(H,323,390)(H,324,407)(H,325,384)(H,326,356)(H,327,368)(H,328,392)(H,329,381)(H,361,362)(H,363,364)(H,365,366)(H4,270,271,279)(H4,272,273,280)(H4,274,275,281)(H4,276,277,282) | ||
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months. We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months. Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it. |
||
About Packaging | 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial. 2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial. 3. Try to avoid loss or contamination during the experiment. |
||
Shipping Condition | Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request. |
Description | Potent endogenous ligand of the kisspeptin receptor (KISS1, GPR54). Binds with high affinity to rat and human KISS1 receptors with Ki values of 1.80 and 1.45 nM respectively. Inhibits chemotaxis, invasion and metastasis of human melanomas and breast carcinomas. Stimulates gonadotropin secretion following i.c.v. administration. |
Metastin (human) Dilution Calculator
Metastin (human) Molarity Calculator
Calcutta University
University of Minnesota
University of Maryland School of Medicine
University of Illinois at Chicago
The Ohio State University
University of Zurich
Harvard University
Colorado State University
Auburn University
Yale University
Worcester Polytechnic Institute
Washington State University
Stanford University
University of Leipzig
Universidade da Beira Interior
The Institute of Cancer Research
Heidelberg University
University of Amsterdam
University of Auckland
TsingHua University
The University of Michigan
Miami University
DRURY University
Jilin University
Fudan University
Wuhan University
Sun Yat-sen University
Universite de Paris
Deemed University
Auckland University
The University of Tokyo
Korea University
- Kisspeptin 10 (human)
Catalog No.:BCC7415
CAS No.:374675-21-5
- Istaroxime hydrochloride
Catalog No.:BCC1661
CAS No.:374559-48-5
- Boc-DL-Ala-OH
Catalog No.:BCC3050
CAS No.:3744-87-4
- DS2
Catalog No.:BCC7748
CAS No.:374084-31-8
- Cephaeline Hydrochloride
Catalog No.:BCC8307
CAS No.:3738-70-3
- Decloxizine
Catalog No.:BCC5529
CAS No.:3733-63-9
- 3-Quinuclidinone
Catalog No.:BCC8642
CAS No.:3731-38-2
- Flavokawain C
Catalog No.:BCN8456
CAS No.:37308-75-1
- H-D-Tyr-OMe.HCl
Catalog No.:BCC3135
CAS No.:3728-20-9
- Sennoside D
Catalog No.:BCN1005
CAS No.:37271-17-3
- Sennoside C
Catalog No.:BCN1004
CAS No.:37271-16-2
- TCS OX2 29
Catalog No.:BCC7670
CAS No.:372523-75-6
- DHP Linker
Catalog No.:BCC2830
CAS No.:3749-36-8
- Amikacin
Catalog No.:BCC5206
CAS No.:37517-28-5
- 2-Chlorocinnamic acid
Catalog No.:BCN5036
CAS No.:3752-25-8
- LY451395
Catalog No.:BCC5377
CAS No.:375345-95-2
- H-D-Ala(4-pyridyl)-OH.HCl
Catalog No.:BCC3325
CAS No.:37535-49-2
- 3-(2-Pyridyl)-Alanine
Catalog No.:BCC2656
CAS No.:37535-51-6
- H- Ala(2-pyridyl)-OH.2HCl
Catalog No.:BCC3318
CAS No.:37535-51-6 net
- 3-(2-Pyridyl)-D-Alanine
Catalog No.:BCC2655
CAS No.:37535-52-7
- 7'(Z)-(8''R,8'''R)-epi-salvianolic acid E
Catalog No.:BCC3319
CAS No.:
- Boc-Ala(4-pyridyl)-OH
Catalog No.:BCC3326
CAS No.:37535-57-2
- Boc-N-Me-Phe-OH
Catalog No.:BCC2615
CAS No.:37553-65-4
- Phorbol 12,13-dibutyrate
Catalog No.:BCC7870
CAS No.:37558-16-0
Prognostic value of metastin expression in human pancreatic cancer.[Pubmed:19154616]
J Exp Clin Cancer Res. 2009 Jan 21;28:9.
BACKGROUND: KiSS-1 was identified as a metastasis-suppressing gene in melanoma cells. The KiSS-1 gene product (metastin) was isolated from human placenta as the ligand of GPR54, a G-protein-coupled receptor. The role of metastin and GPR54 in tumor progression is not fully understood. METHODS: We investigated the clinical significance of metastin and GPR54 expression in pancreatic cancer. We evaluated immunohistochemical expression of metastin and GPR54 in pancreatic ductal adenocarcinoma tissues obtained from 53 consecutive patients who underwent resection between July 2003 and May 2007 at Kyoto University Hospital. In 23 consecutive patients, the plasma metastin level was measured before surgery by enzyme immunoassay. RESULTS: Strong immunohistochemical expression of metastin was detected in 13 tumors (24.5%), while strong expression of GPR54 was detected in 30 tumors (56.6%). Tumors that were negative for both metastin and GPR54 expression were significantly larger than tumors that were positive for either metastin or GPR54 (p = 0.047). Recurrence was less frequent in patients who had metastin-positive tumors compared with those who had metastin-negative tumors (38.5% versus 70.0%, p = 0.04). Strong expression of metastin and GPR54 was significantly correlated with longer survival (p = 0.02). Metastin expression by pancreatic cancer was an independent prognostic factor for longer survival (hazard ratio, 2.1; 95% confidence interval, 1.1-4.7; p = 0.03), and the patients with a high plasma metastin level (n = 6) did not die after surgical resection. CONCLUSION: Strong expression of metastin and GPR54 by pancreatic cancer is associated with longer survival. Metastin expression is an independent prognostic factor for the survival of pancreatic cancer patients. The plasma metastin level could become a noninvasive prognostic factor for the assessment of pancreatic cancer.
Metastin stimulates aldosterone synthesis in human adrenal cells.[Pubmed:18089602]
Reprod Sci. 2007 Dec;14(8):836-45.
Kisspeptins, including metastin, are encoded by the KiSS-1 gene and play an important role in regulating the hypothalamic gonadotropin-releasing hormone (GnRH) system via G protein-coupled receptor 54 (GPR54, also called KiSS-1R). Normally, metastin (also called Kp-54) levels are quite low, except during pregnancy, when levels increase 1000-fold over those found in men and nonpregnant women. However, the potential hormonal role of metastin in the fetal and maternal circulation is unknown. In this study, the authors examine the levels of GPR54 mRNA expression in human adult and fetal adrenals using quantitative real-time reverse-transcriptase polymerase chain reaction (RT-PCR). In addition, they examine the effects of metastin on steroidogenesis and steroidogenic enzyme mRNA levels in fetal adrenal cells and in the H295R adrenocortical cell line using enzyme immunoassay and RT-PCR techniques. The authors demonstrate that GPR54 mRNA is significantly higher (50-fold) in human fetal adrenals than in adult adrenals. Immunohistochemical studies have demonstrated that the GPR54 protein is predominantly expressed in the neocortex of human fetal adrenals in the third trimester. Metastin increases aldosterone production (approximately 2-fold) in both fetal neocortex adrenal cells and H295R adrenal cells, with a maximal increase seen at 100 nM. In addition, metastin increased angiotensin II (Ang II)-stimulated aldosterone production by approximately 1.5-fold. Metastin also increased the ability of the H295R cells to metabolize exogenously added pregnenolone to aldosterone but had no effect on the expression of aldosterone synthase (CYP11B2). These results suggest that the high fetal/maternal levels of metastin seen during pregnancy may affect adrenal production of aldosterone.
Continuous human metastin 45-54 infusion desensitizes G protein-coupled receptor 54-induced gonadotropin-releasing hormone release monitored indirectly in the juvenile male Rhesus monkey (Macaca mulatta): a finding with therapeutic implications.[Pubmed:16469799]
Endocrinology. 2006 May;147(5):2122-6.
The effect of continuous administration of the C-terminal fragment of metastin, the ligand for the G protein-coupled receptor, GPR54, on GnRH-induced LH secretion was examined in three agonadal, juvenile male monkeys whose responsiveness to GnRH was heightened by pretreatment with a chronic pulsatile iv infusion of synthetic GnRH. After bolus injection of 10 microg human (hu) metastin 45-54 (equivalent to kisspeptin 112-121), the GPR54 agonist was infused continuously at a dose of 100 microg/h and elicited a brisk LH response for approximately 3 h. This rise was then followed by a precipitous drop in LH despite continuous exposure of GPR54 to metastin 45-54. On d 4, during the final 3 h of the infusion, single boluses of hu metastin 45-54 (10 microg), N-methyl-DL-aspartic acid (NMDA) (10 mg/kg) and GnRH (0.3 microg) were administered to interrogate each element of the metastin-GPR54-GnRH-GnRH receptor cascade. Although the NMDA and GnRH boluses were able to elicit LH pulses, that of hu metastin 45-54 was not, demonstrating functional integrity of GnRH neurons (NMDA) and GnRH receptors (NMDA and GnRH) but desensitization of GPR54. The desensitization of GPR54 by continuous hu metastin 45-54 administration has therapeutic implications for a variety of conditions currently being treated by GnRH and its analogs, including restoration of fertility in patients with abnormal GnRH secretion (i.e. idiopathic hypogonadotropic hypogonadism and hypothalamic amenorrhea) and selective, reversible suppression of the pituitary-gonadal axis to achieve suppression of gonadal steroids (i.e. precocious puberty, endometriosis, uterine fibroids, and prostate cancer).
Effect of continuous intravenous administration of human metastin 45-54 on the neuroendocrine activity of the hypothalamic-pituitary-testicular axis in the adult male rhesus monkey (Macaca mulatta).[Pubmed:17412800]
Endocrinology. 2007 Jul;148(7):3364-70.
In agonadal juvenile male monkeys, continuous administration of human metastin 45-54 (hu metastin 45-54) leads to desensitization of its receptor, G protein-coupled receptor 54 (GPR54), and decreased LH. The present study extended this observation to the adult male monkey, a more preclinically relevant model in which robust activity in the hypothalamic-pituitary-testicular axis is present. Continuous iv infusion of hu metastin 45-54 at either 200 or 400 microg/h elicited a marked rise in circulating LH that peaked 2-3 h after initiation of treatment. Thereafter, levels declined, and by 24 h, LH in metastin 45-54-infused animals was similar to control. LH release in response to an iv bolus of hu metastin 45-54 (10-30 microg) during the final 3 h of continuous infusion was truncated or abolished (low and high peptide dose, respectively). GPR54 desensitization by the high-dose metastin 45-54 infusion was associated with compromised pituitary response to a bolus GnRH injection (0.3 microg). LH pulse amplitude and pulse frequency were markedly suppressed during high-dose metastin 45-54 treatment. Surprisingly, the fidelity of the relationship between circulating testosterone (T) and LH was distorted during the high-dose peptide infusion. Thus, for a given concentration of LH, T levels were invariably higher during the high-dose metastin 45-54 infusion than during vehicle, suggesting that the peptide may exert direct actions on the testis to amplify T production. These findings support the notion that GPR54 is desensitized by continuous exposure to ligand, and they raise the possibility of an intratesticular role of GPR54.
A role for kisspeptins in the regulation of gonadotropin secretion in the mouse.[Pubmed:15217982]
Endocrinology. 2004 Sep;145(9):4073-7.
Kisspeptins are products of the KiSS-1 gene, which bind to a G protein-coupled receptor known as GPR54. Mutations or targeted disruptions in the GPR54 gene cause hypogonadotropic hypogonadism in humans and mice, suggesting that kisspeptin signaling may be important for the regulation of gonadotropin secretion. To examine the effects of kisspeptin-54 (metastin) and kisspeptin-10 (the biologically active C-terminal decapeptide) on gonadotropin secretion in the mouse, we administered the kisspeptins directly into the lateral cerebral ventricle of the brain and demonstrated that both peptides stimulate LH secretion. Further characterization of kisspeptin-54 demonstrated that it stimulated both LH and FSH secretion, at doses as low as 1 fmol; moreover, this effect was shown to be blocked by pretreatment with acyline, a potent GnRH antagonist. To learn more about the functional anatomy of kisspeptins, we mapped the distribution of KiSS-1 mRNA in the hypothalamus. We observed that KiSS-1 mRNA is expressed in areas of the hypothalamus implicated in the neuroendocrine regulation of gonadotropin secretion, including the anteroventral periventricular nucleus, the periventricular nucleus, and the arcuate nucleus. We conclude that kisspeptin-GPR54 signaling may be part of the hypothalamic circuitry that governs the hypothalamic secretion of GnRH.
The metastasis suppressor gene KiSS-1 encodes kisspeptins, the natural ligands of the orphan G protein-coupled receptor GPR54.[Pubmed:11457843]
J Biol Chem. 2001 Sep 14;276(37):34631-6.
Natural peptides displaying agonist activity on the orphan G protein-coupled receptor GPR54 were isolated from human placenta. These 54-, 14,- and 13-amino acid peptides, with a common RF-amide C terminus, derive from the product of KiSS-1, a metastasis suppressor gene for melanoma cells, and were therefore designated kisspeptins. They bound with low nanomolar affinities to rat and human GPR54 expressed in Chinese hamster ovary K1 cells and stimulated PIP(2) hydrolysis, Ca(2+) mobilization, arachidonic acid release, ERK1/2 and p38 MAP kinase phosphorylation, and stress fiber formation but inhibited cell proliferation. Human GPR54 was highly expressed in placenta, pituitary, pancreas, and spinal cord, suggesting a role in the regulation of endocrine function. Stimulation of oxytocin secretion after kisspeptin administration to rats confirmed this hypothesis.
Metastasis suppressor gene KiSS-1 encodes peptide ligand of a G-protein-coupled receptor.[Pubmed:11385580]
Nature. 2001 May 31;411(6837):613-7.
Metastasis is a major cause of death in cancer patients and involves a multistep process including detachment of cancer cells from a primary cancer, invasion of surrounding tissue, spread through circulation, re-invasion and proliferation in distant organs. KiSS-1 is a human metastasis suppressor gene, that suppresses metastases of human melanomas and breast carcinomas without affecting tumorigenicity. However, its gene product and functional mechanisms have not been elucidated. Here we show that KiSS-1 (refs 1, 4) encodes a carboxy-terminally amidated peptide with 54 amino-acid residues, which we have isolated from human placenta as the endogenous ligand of an orphan G-protein-coupled receptor (hOT7T175) and have named 'metastin'. Metastin inhibits chemotaxis and invasion of hOT7T175-transfected CHO cells in vitro and attenuates pulmonary metastasis of hOT7T175-transfected B16-BL6 melanomas in vivo. The results suggest possible mechanisms of action for KiSS-1 and a potential new therapeutic approach.